

TMCL
Reference and Programming

Manual

Version: 2.22
May 15th, 2008

Trinamic Motion Control GmbH & Co. KG

Sternstraße 67
D – 20357 Hamburg, Germany

http://www.trinamic.com

http://www.trinamic.com/

 TMCL Reference Manual 2

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Version
Version Date Author Comment

2.11 22-Dec-04 OK Corrections for SCO/GCO/CCO, Code protection feature

2.12 21-Feb-05 OK ASCII interface included

2.13 22-Mar-05 OK Minor error corrections

2.14 3-Jun-05 OK New features of TMCL V3.23 included

2.15 11-Nov-05 OK TMCM-109 and TMCM-111 added

2.16 20-Dec-05 OK Features of version TMCL V3.26 and V3.27 included

2.17 22-Jun-06 OK Error with CCO command corrected

2.18 20-Nov-06 OK GAP/GGP/GIO/SIO command descriptions extended

2.20 23-Aug-07 OK Command 138 added, Chapter 8 added

2.21 5-Dec-07 OK TMCL Debugger added

2.22 5-Jun-08 OK MVP COORD with TMCM-61x and TMCM-34x added

Contents

1 Introduction ... 5
2 Basic TMCL Concepts ... 6

2.1 Binary command format ... 6
2.1.1 Checksum calculation .. 6

2.2 The reply format .. 7
2.2.1 Status codes ... 7

2.3 Stand-alone applications ... 7
2.4 TMCL command overview ... 7

2.4.1 Motion commands ... 7
2.4.2 Parameter commands.. 8
2.4.3 I/O port commands .. 8
2.4.4 Control commands ... 8
2.4.5 Calculation commands .. 9

2.5 The ASCII interface ... 9
2.5.1 Format of the command line .. 9
2.5.2 Format of a reply .. 9
2.5.3 Commands that can be used in ASCII mode .. 10
2.5.4 Configuring the ASCII interface ... 10

3 TMCL Command Dictionary .. 11
3.1 ROR – Rotate Right ... 12
3.2 ROL – Rotate Left ... 13
3.3 MST – Motor Stop ... 14
3.4 MVP – Move to Position .. 15
3.5 SAP – Set Axis Parameter ... 17
3.6 GAP – Get Axis Parameter .. 18
3.7 STAP – Store Axis Parameter ... 19
3.8 RSAP – Restore Axis Parameter ... 20
3.9 SGP – Set Global Parameter ... 21
3.10 GGP – Get Global Parameter .. 22
3.11 STGP – Store Global Parameter ... 23
3.12 RSGP – Restore Global Parameter .. 24
3.13 RFS – Reference Search ... 25
3.14 SIO – Set Output ... 26
3.15 GIO – Get Input / Output .. 28

 TMCL Reference Manual 3

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.16 CALC – Calculate .. 30
3.17 COMP – Compare ... 31
3.18 JC – Jump Conditional ... 32
3.19 JA – Jump Always.. 33
3.20 CSUB – Call Subroutine ... 34
3.21 RSUB – Return from Subroutine ... 35
3.22 WAIT – Wait for an event to occur ... 36
3.23 STOP – Stop TMCL program execution ... 38
3.24 SAC – SPI Bus Access... 39
3.25 SCO – Set Coordinate ... 40
3.26 GCO – Get Coordinate .. 41
3.27 CCO – Capture Coordinate .. 42
3.28 CALCX – Calculate using the X register .. 43
3.29 AAP – Accumulator to Axis Parameter .. 44
3.30 AGP – Accumulator to Global Parameter ... 45
3.31 CLE – Clear Error Flags ... 46
3.32 User definable commands (UF0..UF7) .. 47
3.33 Request target position reached event .. 48
3.34 BIN – Return to Binary Mode .. 49
3.35 TMCL Control Functions ... 50

4 Axis Parameters .. 52
4.1 Basic axis parameters (all TMCL stepper motor modules except the TMCM-100 module and the Monopack

2) .. 52
4.2 Advanced axis parameters (all TMCL stepper motor modules except the TMCM-100) 53
4.3 Axis parameters on the TMCM-100 and on the Monopack 2.. 56

5 Global Parameters .. 59
5.1 Bank 0 ... 59
5.2 Bank 1 ... 62
5.3 Bank 2 ... 63

6 Hints and Tips ... 64
6.1 Reference search with TMCM-3xx / 10x / 11x / 61x modules .. 64
6.2 Reference search with TMCM-100 modules ... 65
6.3 Using an incremental encoder with TMCM-100 modules .. 65

6.3.1 Setting the resolution ... 65
6.3.2 Deviation detection .. 66
6.3.3 Position correction ... 66

6.4 Stall Detection (TMCL Version 3.06 or higher) .. 66
6.5 Fixing microstep errors (TMCL V3.13 or higher) ... 67
6.6 Using the RS485 interface ... 67

7 The TMCL IDE ... 68
7.1 Installation .. 68
7.2 Getting started ... 69
7.3 The integrated editor ... 69
7.4 The “File” menu ... 69

7.4.1 New ... 69
7.4.2 Open ... 69
7.4.3 Save, Save as ... 69
7.4.4 Save all .. 69
7.4.5 Close ... 69
7.4.6 Exit .. 69

7.5 The “TMCL” menu .. 69
7.5.1 Basics.. 69
7.5.2 Direct mode .. 70
7.5.3 Assemble a TMCL program .. 70
7.5.4 Downloading the program .. 71

 TMCL Reference Manual 4

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.5.5 The “Main file” function .. 71
7.5.6 The “Start” function ... 71
7.5.7 The “Stop” function .. 71
7.5.8 The “Continue” function ... 71
7.5.9 Disassembling a TMCL program ... 71

7.6 The “Setup” menu ... 72
7.6.1 Options .. 72
7.6.2 Configure ... 73
7.6.3 Search ... 76
7.6.4 Install OS .. 76
7.6.5 StallGuard adjusting tool ... 77
7.6.6 StallGuard profiler .. 77
7.6.7 Parameter calculation tool ... 78

7.7 The TMCL debugger .. 79
7.7.1 Starting the debugger ... 79
7.7.2 Breakpoints ... 79
7.7.3 The “Run / Continue” function.. 79
7.7.4 The “Pause” function ... 80
7.7.5 The “Step” function .. 80
7.7.6 The “Animate” function .. 80
7.7.7 The “Stop / Reset” function ... 80
7.7.8 The “Direct Mode” function in the debugger ... 80

7.8 The syntax of TMCL in the TMCL assembler .. 80
7.8.1 Assembler directives .. 80
7.8.2 Symbolic constants .. 81
7.8.3 Constant expressions ... 81
7.8.4 Labels ... 82
7.8.5 Comments ... 82
7.8.6 TMCL Commands ... 82

8 TMCL Programming Techniques ... 84
8.1 General structure of a TMCL program ... 84

8.1.1 Initialization ... 84
8.1.2 Main loop .. 84

8.2 Using symbolic constants ... 84
8.3 Using variables... 85
8.4 Using subroutines ... 85
8.5 Mixing direct mode and stand alone mode .. 85

Copyright 2003 - 2008 by Trinamic Motion Control GmbH & Co KG, Germany
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher. Information given in this book is believed to be accurate
and reliable. However no responsibility is assumed for the consequences of its use or for any infringement of
patents or other rights of third parties which may result from its use. Specifications are subject to change without
notice.

 TMCL Reference Manual 5

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

1 Introduction
The Trinamic Motion Control Language (TMCL) provides a set of structured motion control commands. Every motion
control command can be given by a host computer or can be stored in an EEPROM on the TMCM module to form
programs that run stand alone on a module. For this purpose there are not only motion control commands but
also commands to control the program structure (like conditional jumps, compare and calculating). So, TMCL forms
a powerful language that can either be used to control a module directly from a host (direct mode) or to program
applications that run on a stand-alone module (program mode or stand-alone mode).
Every command has a binary representation and a mnemonic. The binary format is used to send commands from
the host to a module in direct mode, whereas the mnemonic format is used for easy usage of the commands
when developing stand-alone TMCL applications using the TMCL IDE (IDE means “Integrated Development
Environment”).
There is also a set of configuration variables for every axis and for global parameters which allow individual
configuration of nearly every function of a module.
This manual gives a detailed description of all TMCL commands and their usage. It also describes how to use the
TMCL IDE.

 TMCL Reference Manual 6

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

2 Basic TMCL Concepts

2.1 Binary command format
Every command has a mnemonic and a binary representation. When commands are sent from a host to a module,
the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a
one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has
seven bytes. When a command is to be sent via RS232 or RS485 interface, it has to be enclosed by an address byte
at the beginning and a checksum byte at the end. So it then consists of nine bytes. This is not the case when
communicating via the CAN bus as address and checksum are included in the CAN standard in do not have to be
supplied by the user.
When using a module with IIC interface the first byte (address byte) is left out because IIC has its own addressing
scheme. So for IIC the telegram consists of eight bytes, starting with the command byte.
So the binary command format when using RS232 or RS485 is as follows:

Bytes Meaning

1 Module address

1 Command number

1 Type number

1 Motor or Bank number

4 Value (MSB first!)

1 Checksum

The checksum is calculated by adding up all the other bytes using an 8-bit addition. When using CAN bus, just
leave out the first byte (module address) and the last byte (checksum). When using IIC, leave out the first byte.

2.1.1 Checksum calculation
As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using
8-bit addition. Here are two examples to show how to do this:

 in C:
unsigned char i, Checksum;

unsigned char Command[9];

//Set the “Command” array to the desired command

Checksum = Command[0];

for(i=1; i<8; i++)

 Checksum+=Command[i];

 Command[8]=Checksum; //insert checksum as last byte of the command

//Now, send it to the module

 in Delphi:
 var

 i, Checksum: byte;

 Command: array[0..8] of byte;

 //Set the “Command” array to the desired command

 //Calculate the Checksum:

 Checksum:=Command[0];

 for i:=1 to 7 do Checksum:=Checksum+Command[i];

 Command[8]:=Checksum;

 //Now, send the “Command” array (9 bytes) to the module

 TMCL Reference Manual 7

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

2.2 The reply format
Every time a command has been sent to a module, the module sends a reply. When using RS232 or RS485 the
format of the reply is as follows:

Bytes Meaning

1 Reply address

1 Module address

1 Status (e.g. 100 means “no error”)

1 Command number

4 Value (MSB first!)

1 Checksum

The checksum is also calculated by adding up all the other bytes using an 8-bit addition. When using CAN bus, the
first byte (reply address) and the last byte (checksum) are left out. When using IIC bus the first byte (reply address)
is left out. Do not send the next command before you have received the reply!

2.2.1 Status codes
The reply contains a status code. This status code can have one of the following values:

Code Meaning

100 Successfully executed, no error

101 Command loaded into TMCL
program EEPROM

1 Wrong checksum

2 Invalid command

3 Wrong type

4 Invalid value

5 Configuration EEPROM locked

6 Command not available

2.3 Stand-alone applications
When the module which is used is equipped with an EEPROM to store TMCL applications, the TMCL-IDE can be
used to develop stand-alone TMCL applications that can be downloaded into the EEPROM of the module and then
run on the module. The TMCL IDE contains an editor and a “TMCL assembler” where the commands can be entered
using their mnemonic format and then assembled to their binary representations. This code can then be
downloaded into the module to be executed there. The TMCL IDE is described in detail in chapter 7 of this manual.

2.4 TMCL command overview
In this section an overview of the TMCL commands is given. All commands are described in detail in chapter 3.
Some TMCL programming techniques are given in chapter 8.

2.4.1 Motion commands
These commands control the motion of the motors. They are the most important commands and can be used in
direct mode or in stand-alone mode.

 TMCL Reference Manual 8

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Mnemonic
Command
number

Meaning

ROL 2 Rotate left

ROR 1 Rotate right

MVP 4 Move to position

MST 3 Motor stop

RFS 13 Reference search

SCO 30 Store coordinate

CCO 32 Capture coordinate

GCO 31 Get coordinate

2.4.2 Parameter commands
These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set
independently for every axis, whereas global parameters control the behaviour of the module itself. These
commands can also be used in direct mode and in stand-alone mode.

Mnemonic
Command
number

Meaning

SAP 5 Set axis parameter

GAP 6 Get axis parameter

STAP 7 Store axis parameter into EEPROM

RSAP 8 Restore axis parameter from EEPROM

SGP 9 Set global parameter

GGP 10 Get global parameter

STGP 11 Store global parameter into EEPROM

RSGP 12 Restore global parameter from EEPROM

2.4.3 I/O port commands
These commands control the external I/O ports and can be used in direct mode and in stand-alone mode.

Mnemonic
Command
number

Meaning

SIO 14 Set output

GIO 15 Get input

SAC 29 Access to external SPI device

2.4.4 Control commands
These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to
use them in direct mode. They are intended for stand-alone mode only.

Mnemonic
Command
number

Meaning

JA 22 Jump always

JC 21 Jump conditional

COMP 20 Compare accumulator with constant
value

CLE 36 Clear error flags

CSUB 23 Call subroutine

RSUB 24 Return from subroutine

WAIT 27 Wait for a specified event

STOP 28 End of a TMCL program

 TMCL Reference Manual 9

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

2.4.5 Calculation commands
These commands are intended to be used for calculations within TMCL applications. Although they could also be
used in direct mode it does not make much sense to do so.

Mnemonic Command
number

Meaning

CALC 19 Calculate using the accumulator and a
constant value

CALCX 33 Calculate using the accumulator and the
X register

AAP 34 Copy accumulator to an axis parameter

AGP 35 Copy accumulator to a global parameter

For calculating purposes there is an accumulator (or accu or A register) and an X register. When executed in a
TMCL program (in stand-alone mode), all TMCL commands that read a value store the result in the accumulator.
The X register can be used as an additional memory when doing calculations. It can be loaded from the
accumulator.
When a command that reads a value is executed in direct mode the accumulator will not be affected. This means
that while a TMCL program is running on the module (stand-alone mode), a host can still send commands like
GAP, GGP or GIO to the module (e.g. to query the actual position of the motor) without affecting the flow of the
TMCL program running on the module.

2.5 The ASCII interface
Since TMCL V3.21 there is also an ASCII interface that can be used to communicate with the module and to send
some commands as text strings. The ASCII command line interface is entered by sending the binary command 139
(enter ASCII mode). The commands are then entered as in the TMCL IDE, but not all commands can be entered in
ASCII mode. Only those commands that can be used in direct mode can also be entered in ASCII mode.
To leave the ASCII mode and re-enter the binary mode enter the command “BIN”.

2.5.1 Format of the command line
As the first character, the address character has to be sent. The address character is “A” when the module address
is 1, “B” for modules with address 2 and so on. After the address character there may be spaces (but this is not
necessary). Then, send the command with its parameters. At the end of a command line a <CR> character has to be
sent. Here are some examples for valid command lines:

AMVP ABS, 1, 50000

A MVP ABS, 1, 50000

AROL 2, 500

A MST 1

ABIN

These command would all address the module with address 1. To address e.g. module 3, use address character “C”
instead of “A”. The last command line shown above will make the module return to binary mode.

2.5.2 Format of a reply
After executing the command the module sends back a reply in ASCII format. This reply consists of:

 the address character of the host (host address that can be set in the module)

 the address character of the module

 the status code as a decimal number

 the return value of the command as a decimal number

 a <CR> character

 TMCL Reference Manual 10

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

So, after sending AGAP 0, 1 the reply would be BA 100 –5000 if the actual position of axis 1 is –5000, the
host address is set to 2 and the module address is 1. The value “100” is the status code 100 that means “command
successfully executed”.

2.5.3 Commands that can be used in ASCII mode
The following commands can be used in ASCII mode: ROL, ROR, MST, MVP, SAP, GAP, STAP, RSAP, SGP, GGP, STGP,
RSGP, RFS, SIO, GIO, SAC, SCO, GCO, CCO, UF0, UF1, UF2, UF3, UF4, UF5, UF6, UF7.

There are also special commands that are only available in ASCII mode:

 BIN: This command quits ASCII mode and returns to binary TMCL mode.

 RUN: This command can be used to start a TMCL program in memory.

 STOP: Stops a running TMCL application.

2.5.4 Configuring the ASCII interface
The module can be configured so that it starts up either in binary mode or in ASCII mode. Global parameter 67 is
used for this purpose (please see also chapter 5.1). Bit 0 determines the startup mode: if this bit is set, the module
starts up in ASCII mode, else it will start up in binary mode (default). Bit 4 and Bit 5 determine how the characters
that are entered are echoed back. Normally, both bits are set to zero. In this case every character that is entered is
echoed back when the module is addressed. Character can also be erased using the backspace character (press the
backspace key in a terminal program). When bit 4 is set and bit 5 is clear the characters that are entered are not
echoed back immediately but the entire line will be echoed back after the <CR> character has been sent. When bit
5 is set and bit 4 is clear there will be no echo, only the reply will be sent. This may be useful in RS485 systems.

 TMCL Reference Manual 11

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3 TMCL Command Dictionary
This chapter describes all TMCL commands. The commands are sorted by their command numbers. For every
command the mnemonic with its syntax and the binary representation are given.
Ranges for the parameters are also given. They sometimes differ between the types of the modules. If this is the
case, value ranges are given for every module.
Last but not least some examples are given at the end of every command description. In the examples for the
binary representation always RS232/RS485 communication (9 byte) format is used with module address 1 and host
address 2. When using CAN bus communication just leave out the first and the last byte (as mentioned in chapter
2.1).

 TMCL Reference Manual 12

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.1 ROR – Rotate Right
Description: This instruction starts rotation in "right" direction, i.e. increasing the position counter.

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0
("target velocity").

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR <motor number>, <velocity>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

1 (don't care) <motor number> <velocity>

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Motor number Velocity

TMCM-300/301/302/303/310 0..2 0..2047

TMCM-100 always 0 0..8191

Example:

Rotate right, motor #2, velocity = 350

Mnemonic: ROR 2, 350

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $01 $00 $02 $00 $00 $01 $5e $62

Note for TMCM-300/301/302/303/310 modules:

Adjust the axis parameter "pulse divisor" (no. 154, see Chapter 5), if the speed value is very low (<50) or above the
upper limit (2047). See TMC 428 datasheet (p.24) for calculation of physical units.

Note for TMCM-100 modules:

Adjust the axis parameter “pre-divider” if the speed is not within the desired range.

Note:
With some modules it is possible to use stall detection. Please see section 6.4 for details.

 TMCL Reference Manual 13

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.2 ROL – Rotate Left
Description: This instruction starts rotation in "left" direction, i.e. decreasing the position counter.

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0
("target velocity").

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL <motor number>, <velocity>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

2 (don't care) <motor number> <velocity>

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Motor number Velocity

TMCM-300/301/302/303/310 0..2 0..2047

TMCM-100 always 0 0..8191

Example:

Rotate left, motor #1, velocity = 1200

Mnemonic: ROL 1, 1200

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $02 $00 $01 $00 $00 $04 $b0 $b8

Note for TMCM-300/301/302/303/310 modules:

Adjust the axis parameter "pulse divisor" (no. 154, see Chapter 5), if the speed value is very low (<50) or above the
upper limit (2047). See TMC 428 datasheet (p.24) for calculation of physical units.

Note for TMCM-100 modules:

Adjust the axis parameter “pre-divider” if the speed is not within the desired range.

Note:
With some modules it is possible to use stall detection. Please see section 6.4 for details.

 TMCL Reference Manual 14

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.3 MST – Motor Stop
Description: This instruction stops the motor.

Internal function: the axis parameter "target velocity" is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

3 (don't care) <motor number> (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Motor number

TMCM-300/301/302/303/310 0..2

TMCM-100 always 0

Example: Stop motor #1

Mnemonic: MST 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $03 $00 $01 $00 $00 $00 $00 $05

Note:
With some modules it is possible to use stall detection. Please see section 6.4 for details.

 TMCL Reference Manual 15

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.4 MVP – Move to Position
Description: A movement towards the specified position is started, with automatic generation of acceleration- and
deceleration ramps. The maximum velocity and acceleration are defined by axis parameters #4 and #5.
Three operation types are available:
- Moving to an absolute position in the range from - 8388608 to +8388608 (-223 to+223).
- Starting a relative movement by means of an offset to the actual position. In this case, the resulting
 new position value must not exceed the above mentioned limits, too.
- Moving one or more motors to a (previously stored) coordinate, see SCO (section 3.25) for details. When moving
more than one axis the module will try to interpolate: The velocities will be calculated so that all motors reach
their target positions at the same time. It is important that the maximum accelerations (axis parameter #5) and the
ramp and pulse dividers (axis parameters #153 and #154) of all axes are set to the same values as otherwise
interpolation will not work correctly. With TMCM-100 modules there is no interpolation as it controls only one axis.

Internal function: A new position value is transferred to the axis parameter #2 target position”.

Related commands: SAP, GAP, SCO, CCO, GCO, MST

Mnemonic: MVP <ABS|REL|COORD>, <motor number>, <position|offset|coordinate number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

4 0 ABS – absolute <motor number> <position>

1 REL – relative <motor number> <offset>

2 COORD –
coordinate

0 motor 0
1 motor 1
2 motor 2
TMCM-301, 302,
303, 310:
3 (not allowed)
4 motors 0&1
5 motors 1&2
6 motors 0&2
7 motors 0,1,2
TMCM-6xx, 34x:
see below

<coordinate number
(0..20)
(Version >=3.17: 0..56)>

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges: The <motor number> parameter depends on the module type: always 0 on single axis modules,

0..2 on three axis modules and 0..5 on six axis modules. With MVP COORD, the motor number is interpreted
differently.

Examples:

Move motor #1 to (absolute) position 90000
Mnemonic: MVP ABS, 1, 9000
Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

 TMCL Reference Manual 16

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Value (hex) $01 $04 $00 $01 $00 $01 $5f $90 $f6

Move motor #0 from current position 1000 steps backward (move relative –1000)
Mnemonic: MVP REL, 0, -1000

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $04 $01 $00 $ff $ff $fc $18 $18

Move motor #2 to previously stored coordinate #8
Mnemonic: MVP COORD, 2, 8
Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $04 $02 $02 $00 $00 $00 $08 $11

Note:
With some modules it is possible to use stall detection. Please see section 6.4 for details.

MVP COORD on TMCM-6xx and TMCM-34x modules

On these modules, there are some more options for the MVP COORD command. For this reason the “motor”
parameter with the MVP COORD command is interpreted as follows on those modules:

 Moving only one motor: set the “Motor” parameter to the motor number (0..5).

 Moving multiple motors without interpolation: Set bit 7 of the “Motor” parameter. Now the bits 0..5 of
the “Motor” parameter define which motors are to be started. Each of these bits stands for one motor.

 Moving multiple motors using interpolation: Set bit 6 of the “Motor” parameter. . Now the bits 0..5 of
the “Motor” parameter define which motors are to be moved using interpolation. Each of these bits
stands for one motor. It is not possible to start a group of more than three motors using
interpolation. However, it is possible to start one group of three motors right after starting a group of
other three motors.

On the TMCM-610/611/612 modules the interpolation feature is not available in firmware versions prior to 6.31.
On the TMCM-341/342/343 modules the interpolation feature is available in all firmware versions that have been
released for these modules.

Examples:

 MVP COORD, $47, 2 moves motors 0, 1 and 2 to coordinate 2 using interpolation.

 MVP COORD, $87, 5 moves motors 0, 1 and 2 to coordinate 5 without using interpolation.

 TMCL Reference Manual 17

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.5 SAP – Set Axis Parameter
Description: Most parameters of a TMCM module can be adjusted individually for each axis. Although these
parameters vary widely in their formats (1 to 24 bits, signed or unsigned) and physical locations (TMC428, TMC453,
controller RAM, controller EEPROM), they all can be set by this function. See chapter 4 for a complete list of all
axis parameters. See STAP (section 3.7) for permanent storage of a modified value.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The

parameter is transferred to the correct position in the appropriate device.

Related commands: GAP, STAP, RSAP , AAP

Mnemonic: SAP <parameter number>, <motor number>, <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

5 <parameter
number>

<motor number> <value>

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Parameter number Motor number Value

TMCM-300/301/302/303/310 s. chapter 4 0..2 s. chapter 4

TMCM-100 s. chapter 4 always 0 s. chapter 4

Example:
set the absolute maximum current of motor #1 to 200mA

Mnemonic: SAP 6, 1, 200
Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $05 $06 $01 $00 $00 $00 $c8 $d5

Note:
The parameter numbers are different in TMCL firmware versions before 2.18. Please upgrade to a newer
firmware version if you have such an old version.

 TMCL Reference Manual 18

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.6 GAP – Get Axis Parameter
Description: Most parameters of a TMCM module can be adjusted individually for each axis. Although these
parameters vary widely in their formats (1 to 24 bits, signed or unsigned) and physical locations (TMC428, TMC453,
controller RAM, controller EEPROM), they all can be read by this function. In stand-alone mode the requested value
is also transferred to the accumulator register for further processing purposes such as conditioned jumps. In direct
mode, the value read is only output in the “value” field of the reply, without affecting the accumulator. See
chapter 4 for a complete list of all parameters.

Internal function: The parameter is read out of the correct position in the appropriate device. The parameter

format is converted adding leading zeros (or ones for negative values).

Related commands: SAP, STAP, AAP, RSAP

Mnemonic: GAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

6 <parameter number> <motor number> (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Parameter number Motor number

TMCM-300/301/302/303/310 s. chapter 4 0..2

TMCM-100 s. chapter 4 always 0

Example: get the actual position of motor #2

Mnemonic: GAP 2, 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $06 $01 $02 $00 $00 $00 $00 $0a

Reply:

Byte Index 0 1 2 3 4 5 6 7 8

Function Host-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 $64 $06 $00 $00 $02 $c7 $36

 status=no error, position=711

 TMCL Reference Manual 19

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.7 STAP – Store Axis Parameter
Description: Axis parameters are located in RAM memory, so modifications are lost at power down. This
instruction enables permanent storing. Most parameters are automatically restored after power up (see axis
parameter list in chapter 4).

Internal function: The specified parameter is copied from its RAM location the configuration EEPROM.

Related commands: SAP, RSAP, GAP, AAP

Mnemonic: STAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

7 <parameter number> <motor number> (don't care)*

*the "value" operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is
saved.

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Parameter number Motor number Value

s. chapter 4 0..2 s. chapter 4

s. chapter 4 always 0 s. chapter 4

Example: store the maximum speed of motor #1

Mnemonic: STAP 4, 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $07 $04 $01 $00 $00 $00 $00 $0d

Note: The STAP command will not have any effect when the configuration EEPROM is locked (s. 5.1, “EEPROM lock
flag” and section 7.6.2.5). In direct mode, the error code 5 (configuration EEPROM locked, see also section 2.2.1) will
be returned in this case.

 TMCL Reference Manual 20

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.8 RSAP – Restore Axis Parameter
Description: For all configuration-related axis parameters, non-volatile memory locations are provided. By default,
most parameters are automatically restored after power up (see axis parameter list in chapter 4). A single
parameter that has been changed before can be reset by this instruction.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, AAP

Mnemonic: RSAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

8 <parameter number> <motor number> (don't care)

Reply structure in direct mode:

STATUS VALUE

100 – OK (don't care)

Example: restore the maximum current of motor #1
Mnemonic: RSAP 6, 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $08 $06 $01 $00 $00 $00 $00 $10

 TMCL Reference Manual 21

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.9 SGP – Set Global Parameter
Description: Global parameters are related to the host interface, peripherals or application specific variables. The
different groups of these parameters are organised in "banks" to allow a larger total number for future products.
Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user variables. See chapter 0
for a complete parameter list.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The

parameter is transferred to the correct position in the appropriate (on board) device.

Related commands: GGP, STGP, RSGP, AGP

Mnemonic: SGP <parameter number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

9 <parameter
number>

<bank number> <value>

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Example: set the serial address of the target device to 3
Mnemonic: SGP 66, 0, 3

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $09 $42 $00 $00 $00 $00 $03 $4f

 TMCL Reference Manual 22

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.10 GGP – Get Global Parameter
Description: All global parameters can be read with this function. In stand-alone mode, the result is copied to the
accumulator register for further processing purposes such as conditional jumps. In direct mode, the result is only
output in the “value” field of the reply, without affecting the accumulator. See chapter 0 for a complete parameter
list.

Internal function: The parameter is read out of the correct position in the appropriate device. The parameter

format is converted adding leading zeros (or ones for negative values).

Related commands: SGP, STGP, RSGP, AGP

Mnemonic: GGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

10 (see chapter 6) <bank number>
see chapter 6

 (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Example: get the serial address of the target device

Mnemonic: GGP 66, 0

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $0a $42 $00 $00 $00 $00 $00 $4d

Reply:

Byte Index 0 1 2 3 4 5 6 7 8

Function Host-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 $64 $0a $00 $00 $00 $01 $72

 Status=no error, Value=1

 TMCL Reference Manual 23

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.11 STGP – Store Global Parameter
Description: Some global parameters are located in RAM memory, so modifications are lost at power down. This
instruction enables permanent storing. Most parameters are automatically restored after power up (see the list of
global parameters in chapter 0).

Internal function: The specified parameter is copied from its RAM location to the configuration EEPROM.

Related commands: SGP, GGP, RSGP, AGP

Mnemonic: STGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

11 (see chapter 6) <bank number>
(see chapter 6)

 (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Example: store the serial address of the target device

Mnemonic: STGP 42, 0

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $0b $42 $00 $00 $00 $00 $00 $4e

Note: The STGP command will not have any effect when the configuration EEPROM is locked (s. 5.1, “EEPROM lock
flag” and section 7.6.2.5). In direct mode, the error code 5 (configuration EEPROM locked, see also section 2.2.1) will
be returned in this case.

 TMCL Reference Manual 24

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.12 RSGP – Restore Global Parameter
Description: This instruction recovers the (permanently) stores the value of a RAM-located parameter. Please see
chapter 0 for a list of available parameters.

Internal function: The specified parameter is copied from the configuration EEPROM to its RAM location.

Related commands: SGP, STGP, GGP, AGP

Mnemonic: RSGP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

12 <parameter number> <bank number>

 (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Example: restore the serial address of the device
Mnemonic: RSGP 66, 0

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $0c $42 $00 $00 $00 $00 $00 $4f

 TMCL Reference Manual 25

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.13 RFS – Reference Search
Description: A build-in reference point search algorithm can be started (and stopped). The reference search
algorithm provides switching point calibration and three switch modes. The status of the reference search can also
be queried to see if it has already finished. (In a TMCL program it is better to use the WAIT command to wait for
the end of a reference search.) Please see the appropriate parameters in the axis parameter table to configure the
reference search algorithm to meet your needs (chapter 4). The reference search can be started or stopped, or the
actual status of the reference search can be checked.

Internal function: The reference search is implemented as a state machine, so interaction is possible during

execution.

Related commands: WAIT

Mnemonic: RFS <START|STOP|STATUS>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

13 0 START – start ref. search
1 STOP – abort ref. search
2 STATUS – get status

<motor number> (don't care)

Reply in direct mode:

When using type 0 (START) or 1 (STOP):

STATUS VALUE

100 – OK (don't care)

When using type 2 (STATUS):

STATUS VALUE

100 – OK 0 – no ref. search active
other values – ref.
search is active

Example: start reference search of motor #1

Mnemonic: RFS START, 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $0d $00 $01 $00 $00 $00 $00 $0f

Note:
With some modules it is possible to use stall detection instead of a reference switch. Please see section 6.4 for
details.

 TMCL Reference Manual 26

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.14 SIO – Set Output
Description: This command sets the status of a digital output either to low (0) or to high (1). Please see the list of
the outputs in this section.

Internal function: The passed value is transferred to the specified output line.

Related commands: GIO, WAIT

Mnemonic: SIO <port number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

14 <port number> <bank number> <value>

Reply structure:

STATUS VALUE

100 – OK (don't care)

Example: turn the LED on the TMCM-300 base board off (bank 2, line 7)
Mnemonic: SIO 7, 2, 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $0e $07 $02 $00 $00 $00 $01 $19

Overview of available output ports:
With the TMCM-100/301/302/303/310/610 and TMCM-300 modules, only bank 2 is available and contains 8 output
lines:

Type I/O line Range

0 DOUT0 0/1

1 DOUT1 0/1

2 DOUT2 0/1

3 DOUT3 0/1

4 DOUT4 0/1

5 DOUT5 0/1

6 DOUT6 0/1

7 DOUT7 0/1

Please see the manuals of the individual modules for detailed electrical description of the output ports of a
module.

Extension in TMCL version 3.23:
On the TMCM-301/302/303/310 and 61x modules it is now also possible to switch the pull-up resistors on the
inputs on and off. When using the inputs as digital inputs it is often useful to have the pull-up resistors switched
on, but when using the inputs as analogue inputs the pull-up resistors must be switched of. For this purpose, set
the bank parameter to 0 and the type parameter to the number of the desired input (please see the GIO command
for a list of the input numbers). Set the value parameter to 0 to switch off and to 1 to switch on a pull-up resistor.
The pull-up resistors are switched off by default.

 TMCL Reference Manual 27

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Extension in TMCL version 3.30 and 6.22:
On the TMCM-3xx, TMCM-34x and TMCM-61x modules it is now possible to address all eight output lines with one
single SIO command. This can be done by setting the type parameter to 255 and the bank parameter to 2. The
value parameter must then be set to a value between 0..255, where every bit represents one output line.
Furthermore, the value can also be set to –1. In this special case, the contents of the lower 8 bits of the
accumulator are copied to the eight output pins.
Example: SIO 255, 2, 255 sets all output pins high.
The following program will show the states of the eight input lines on the output lines:
Loop: GIO 255, 0

SIO 255,2,-1

 JA Loop

 TMCL Reference Manual 28

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.15 GIO – Get Input / Output
Description: This function reads a digital or analogue input port. So, digital lines will read 0 and 1, while the ADC
channels deliver their 10 bit result in the range of 0…1023. In stand-alone mode the requested value is copied to
the "accumulator" (accu) for further processing purposes such as conditioned jumps. In direct mode the value is
only output in the “value” field of the reply, without affecting the accumulator. The actual status of a digital output
line can also be read.

Internal function: The specified line is read.

Related commands: SIO, WAIT

Mnemonic: GIO <port number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

15 <port number> <bank number> (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK <status of the
port>

Example: get the analogue value of ADC channel 3
Mnemonic: GIO 3, 1

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $0f $03 $01 $00 $00 $00 $00 $14

Reply:

Byte Index 0 1 2 3 4 5 6 7 8

Function Host-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 $64 $0f $00 $00 $01 $fa $72

 value: 506

 TMCL Reference Manual 29

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Overview of available input ports:
I/O bank 0 – digital inputs. The ADIN lines can be read as digital or analogue inputs at the same time. The
analogue values can be accessed in bank 1.
Note: When using a digital input it is often useful to switch on its pull-up resistor. Please see the SIO command

on how to do this.

Type I/O line Range

0 ADIN0 0/1

1 ADIN1 0/1

2 ADIN2 0/1

3 ADIN3 0/1

4 ADIN4 0/1

5 ADIN5 0/1

6 ADIN6 0/1

7 ADIN7 0/1

8 OPTO1 0/1

9 OPTO2 0/1

10 SHUTDOWN 0/1

I/O bank 1 – analogue inputs (not on all modules). The ADIN lines can be read as digital or analogue inputs at the
same time. The digital states can be accessed in bank 0.
Note: When using an input in analogue mode its pull-up resistor must be switched off. Please see the SIO
command on how to do this.

Type I/O line Range

0 ADIN0 0…1023

1 ADIN1 0…1023

2 ADIN2 0…1023

3 ADIN3 0…1023

4 ADIN4 0…1023

5 ADIN5 0…1023

6 ADIN6 0…1023

7 ADIN7 0…1023

I/O bank 2: here, the status of the digital outputs (see section 3.14) can be read back.

Note: Not all I/O lines are available on every module. Please see the documentation of the individual module for
details. There may also be more I/O lines on newer modules.

Extension in TMCL V3.30 and 6.22:
On the TMCM-30x, TMCM-34x and TMCM-61x modules it is now possible to read all eight digital inputs with only
one GIO command. This can be done by setting the type parameter to 255 and the bank parameter to 0. In this
case the status of all eight digital input lines will be read to the lower eight bits of the accumulator. So the
following program can be used to represent the states of the eight input lines on the eight output lines:
Loop: GIO 255, 0

SIO 255,2,-1

 JA Loop

 TMCL Reference Manual 30

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.16 CALC – Calculate
Description: A value in the accumulator variable, previously read by a function such as GAP (get axis parameter),
can be modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand
value must (in most cases) be specified. The result is written back to the accumulator, for further processing like
comparisons or data transfer.

Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALC <op>, <value>

 where <op> is ADD, SUB, MUL, DIV, MOD, AND, OR, XOR, NOT or LOAD

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

19 0 ADD – add to accu
1 SUB – subtract from accu
2 MUL – multiply accu by
3 DIV – divide accu by
4 MOD – modulo divide by
5 AND – logical and accu with
6 OR – logical or accu with
7 XOR – logical exor accu with
8 NOT – logical invert accu
9 LOAD – load operand to accu

(don't care) <operand>

Example: multiply accu by –5000
Mnemonic: CALC MUL, -5000

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $13 $02 $00 $FF $FF $EC $78 $78

 TMCL Reference Manual 31

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.17 COMP – Compare
Description: The specified number is compared to the value in the accumulator register. The result of the
comparison can for example be used by the conditional jump (JC) instruction. This command is intend for use in
stand-alone operation only and must not be used indirect mode.

Internal function: The specified value is compared to the internal "accumulator", which holds the value of a
preceding "get" or calculate instruction (see GAP/GGP/GIO/CALC/CALCX). The internal arithmetic status flags are set
according to the comparison result.

Related commands: JC (jump conditional), GAP, GGP,GIO, CALC, CALCX

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

20 (don't care) (don't care) <comparison value>

Example:
Jump to the address given by the label when the position of motor #2 is greater than or equal to 1000.

GAP 1, 2, 0 //get axis parameter, type: no. 1 (actual position), motor: 2, value:0 (don't care)
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the program

Binary format of the COMP 1000 command:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $14 $00 $00 $00 $00 $03 $e8 $00

Note that the host address and the reply is only used to transfer this instruction to the TMCL program memory
during downloading of a TMCL program. It does not make sense to use this command in direct mode.

 TMCL Reference Manual 32

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.18 JC – Jump Conditional
Description: A conditional jump to a fixed address in the TMCL-program memory, if the specified condition is met.
The conditions refer to the result of a preceding comparison, e.g. by the COMP instruction. For stand-alone
operation only.

Internal function: the TMCL program counter is set to the passed value if the arithmetic status flags are in the
appropriate state(s).

Related commands: JA, COMP, WAIT, CLE

Mnemonic: JC <condition>, <label>

 where <condition>=ZE|NZ|EQ|NE|GT|GE|LT|LE|ETO|EAL|EDV|EPO

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

21 0 ZE - zero
1 NZ - not zero
2 EQ - equal
3 NE - not equal
4 GT - greater
5 GE - greater/equal
6 LT - lower
7 LE - lower/equal
8 ETO - time out error
9 EAL – external alarm
10 EDV – deviation error
11 EPO – position error
12 ESD – shutdown error

(don't care) <jump address>

EDV and EPO: TMCM-100 only.
EAL and ESD: not available with TMCM-300.

Example: Jump to address given by the label when the position of motor #2 is greater than or equal to 1000.

GAP 1, 2, 0 //get axis parameter, type: no. 1 (actual position), motor: 2, value:0 (don't care)
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal
...
...
Label: ROL 0, 1000

Binary format of “JC GE, Label” when Label is at address 10:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $15 $05 $00 $00 $00 $00 $0a $25

Note that the host address and the reply is only used to transfer this instruction to the TMCL program memory.
See the host-only control functions for details. It is not possible to use this command in direct mode.

 TMCL Reference Manual 33

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.19 JA – Jump Always
Description: Jump to a fixed address in the TMCL program memory. This command is intended for standalone
operation only and not to be used in direct mode.

Internal function: the TMCL program counter is set to the passed value.

Related commands: JC, WAIT, CSUB

Mnemonic: JA <Label>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

22 (don't care) (don't care) <jump address>

Example: An infinite loop in TMCL

Loop: MVP ABS, 0, 10000
 WAIT POS, 0, 0
 MVP ABS, 0, 0
 WAIT POS, 0, 0
 JA Loop //Jump to the label “Loop”

Binary format of “JA Loop” assuming that the label “Loop” is at address 20:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $16 $00 $00 $00 $00 $00 $14 $2b

Note that the host address and the reply is only used to transfer this instruction to the TMCL program memory.
This command can not be used in direct mode.

 TMCL Reference Manual 34

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.20 CSUB – Call Subroutine
Description: Calls a subroutine in the TMCL program memory. This command is intended for standalone operation
only and must not be used in direct mode.

Internal function: The actual TMCL program counter value is saved to an internal stack, then overwritten with the

passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls
to 8. The command will be ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <Label>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

23 (don't care) (don't care) <subroutine address>

Example: Call a subroutine

Loop: MVP ABS, 0, 10000
 CSUB SubW //Save program counter and jump to label “SubW”
 MVP ABS, 0, 0
 JA Loop

SubW: WAIT POS, 0, 0
 WAIT TICKS, 0, 50
 RSUB //Continue with the command following the CSUB command

Binary format of the “CSUB SubW” command assuming that the label “SubW” is at address 100:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $17 $00 $00 $00 $00 $00 $64 $7c

Note that the host address and the reply is only used to transfer this instruction to the TMCL program memory.
This command can not be used in direct mode.

 TMCL Reference Manual 35

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.21 RSUB – Return from Subroutine
Description: Return from a subroutine to the command after the CSUB command that called it. This command is
intended for use in stand-alone mode only and must not be used in direct mode.

Internal function: the TMCL program counter is set to the last value of the stack. The command will be ignored if

the stack is empty.

Related command: CSUB

Mnemonic: RSUB

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

24 (don't care) (don't care) (don't care)

Example: please see the CSUB example (section 3.20).

Binary format of RSUB:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $18 $00 $00 $00 $00 $00 $00 $19

Note that the host address and the reply is only used to transfer this instruction to the TMCL program memory.
This command can not be used in direct mode.

 TMCL Reference Manual 36

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.22 WAIT – Wait for an event to occur
Description: Pause the execution of the TMCL program until the specified condition is met. This command is
intended for stand-alone operation only and must not be used in direct mode. There are 5 different wait
conditions that can be used:

 TICKS: wait until the number of timer ticks specified by the <ticks> parameter has been reached. The
<motor number> parameter is ignored in this case (set it to zero).

 POS: wait until the target position of the motor specified by the <motor> parameter has been reached.
An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

 REFSW: wait until the reference switch of the motor specified by the <motor> parameter has been
trigerred. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

 LIMSW: wait until a limit switch of the motor specified by the <motor> parameter has been triggered.
An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

 RFS: wait until the reference search of the motor specified by the <motor> field has been reached. An
optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to
check for such errors or clear the error using the CLE command.

Internal function: The TMCL program counter is held until the specified condition is met.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, <motor number>, <ticks>

 where <condition> is TICKS|POS|REFSW|LIMSW|RFS

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

27 0 TICKS - timer ticks* (don't care) <no. of ticks*>

1 POS - target position reached <motor number>
0..2 resp. 0..5

<no. of ticks* for timeout>,
0 for no timeout

2 REFSW – reference switch <motor number>
0..2 resp. 0..5

<no. of ticks* for timeout>,
0 for no timeout

3 LIMSW – limit switch <motor number>
0..2 resp. 0..5

<no. of ticks* for timeout>,
0 for no timeout

4 RFS – reference search
completed

<motor number>
0..2 resp. 0..5

<no. of ticks* for timeout>,
0 for no timeout

 *one tick is 10 milliseconds (in standard firmware)

Parameter ranges:

Single axis modules: <motor number> must always be 0.
 Three axis modules: <motor number> can be 0..2
 Six axis modules: <motor number> can be 0..5

 TMCL Reference Manual 37

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Example: wait for motor #1 to reach its target position, without timeout

Mnemonic: WAIT POS, 1, 0

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $1b $01 $01 $00 $00 $00 $00 $1e

Note that the host address and the reply is only used to transfer this instruction to the TMCL program memory.
This command is not to be used in direct mode.

 TMCL Reference Manual 38

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.23 STOP – Stop TMCL program execution
Description: Stops executing a TMCL stand-alone program. This command should be placed at the end of every
TMCL program. It is intended for stand-alone operation only and must not be used in direct mode.

Internal function: TMCL instruction fetching is stopped.

Related commands: none

Mnemonic: STOP

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

28 (don't care) (don't care) (don't care)

Example:

Mnemonic: STOP

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $1c $00 $00 $00 $00 $00 $00 $1d

The host address and the reply is only used to transfer this instruction to the TMCL program memory. Do not use
this command in direct mode.

 TMCL Reference Manual 39

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.24 SAC – SPI Bus Access
Description: Allows access to external SPI devices connected to the SPI bus of the module. Connection of external
SPI devices differs between the different module types. Please contact TRINAMIC for further details and see also
the hardware manual of your module.

Related commands: SIO, GIO

Mnemonic: SAC <bus number>, <number of bytes>, <send data>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

29 <bus number> <number of bytes> <send data>

Reply in direct mode:

STATUS VALUE

100 – Success <received data>

In version 3.23 of TMCL this command has been extended so that not only direct values but also the contents of
the accumulator register can be sent. In stand-alone mode the received data is also stored in the accumulator.
Most modules have three chip select outputs (SPI_SEL0, SPI_SEL1, SPI_SEL2). The “type” parameter (bus number)
determines the chip select output that is to be used. The “motor/bank” parameter determines the number of bytes
to be sent (1, 2, 3, or 4). The “value” parameter contains the data to be sent. When bit 7 of the bus number is set,
this value is ignored and the contents of the accumulator is sent instead. But please note that in the TMCL IDE
always all three values have to be specified (when sending the contents of the accumulator the “value” parameter
is a dummy parameter). The bus numbers are as follows (please note the gap in the bus numbers; do not use 1 or
129!):

Bus number Chip select output

0 SPI_SEL0, output direct value

1 Do not use

2 SPI_SEL1, output direct value

3 SPI_SEL2, output direct value

128 SPI_SEL0, output contents of accumulator

129 Do not use

130 SPI_SLE1, output contents of accumulator

131 SPI_SEL2, output contents of accumulator

 TMCL Reference Manual 40

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.25 SCO – Set Coordinate
Description: Up to 20 position values (coordinates) can be stored for every axis for use with the MVP COORD
command (s. section 3.4). This command sets a coordinate to a specified value.
Note: the coordinate number 0 is only stored in RAM, all others are also stored in the EEPROM.

Internal function: The passed value is stored in the internal position array.

Related commands: GCO, CCO, MVP

Mnemonic: SCO <coordinate number>, <motor number>, <position>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

30 <coordinate number>
(0…20)

<motor number> <position>
(-223…+223)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Motor number

TMCM-300/301/302/303/310 0..2

TMCM-1xx always 0

TMCM-610/611/612 0..5

Example: set coordinate #1 of motor #2 to 1000

Mnemonic: SCO 1, 2, 1000

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $1e $01 $02 $00 $00 $03 $e8 $0d

 TMCL Reference Manual 41

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.26 GCO – Get Coordinate
Description: Read a previously stored coordinate. In stand-alone mode the requested value is copied to the
accumulator register for further processing purposes such as conditioned jumps. In direct mode, the value is only
output in the value field of the reply, without affecting the accumulator. Note: the coordinate number 0 is stored
in RAM only, all others are also stored in the EEPROM.

Internal function: The desired value is read out of the internal coordinate array, copied to the accumulator register

and -in direct mode- returned in the “value” field of the reply.

Related commands: SCO, CCO, MVP

Mnemonic: GCO <coordinate number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

31 <coordinate number>
(0…20)

<motor number> (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Motor number

TMCM-300/301/302/303/310 0..2

TMCM-1xx always 0

TMCM-610/611/612 0..5

Example: get motor #2 value of coordinate 1
Mnemonic: GCO 1, 2

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $1f $01 $02 $00 $00 $00 $00 $23

Reply:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 $64 $0a $00 $00 $00 $00 $86

 Value: 0

 TMCL Reference Manual 42

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.27 CCO – Capture Coordinate
Description: The actual positions of the specified axes are copied to the selected coordinate variables.
Note: the coordinate number 0 is stored in RAM only, all others are also stored in the EEPROM.

Internal function: The selected (24 bit) position values are written to the 20 by 3 bytes wide coordinate array.

Related commands: SCO, GCO, MVP

Mnemonic: CCO <coodinate number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

32 <coordinate number>
(0…20)

TMCM-3xx:
0 motor 0
1 motor 1
2 motor 2
3 (not allowed)
4 motors 0&1
5 motors 1&2
6 motors 0&2
7 motors 0,1,2
TMCM-6xx:
0..5 (motor number)
TMCM-1xx:
always 0
TMCM-34x:
0..2 (motor 0..2)

 (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges: The <motor number> value must always be 0 on TMCM-100 modules.

Example: store current position of all axes to coordinate 3

Mnemonic: CCO 3, 7

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $20 $03 $07 $00 $00 $00 $00 $2b

 TMCL Reference Manual 43

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.28 CALCX – Calculate using the X register
Description: This instruction is very similar to CALC, but the second operand comes from the X register. The X
register can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the
accumulator for further processing like comparisons or data transfer.

Related commands: CALC, COMP, JC, AAP, AGP

Mnemonic: CALCX <operation>
 with <operation>=ADD|SUB|MUL|DIV|MOD|AND|OR|XOR|NOT|LOAD|SWAP

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

33 0 ADD – add X register to accu
1 SUB – subtract X register from accu
2 MUL – multiply accu by X register
3 DIV – divide accu by X-register
4 MOD – modulo divide accu by x-register
5 AND – logical and accu with X-register
6 OR – logical or accu with X-register
7 XOR – logical exor accu with X-register
8 NOT – logical invert X-register
9 LOAD – load accu to X-register
10 SWAP – swap accu with X-register

(don't care) (don't care)

Example: multiply accu by X-register
Mnemonic: CALCX MUL

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $21 $02 $00 $00 $00 $00 $00 $24

 TMCL Reference Manual 44

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.29 AAP – Accumulator to Axis Parameter
Description: The content of the accumulator register is transferred to the specified axis parameter. For practical
usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been
modified by the CALC or CALCX (calculate) instruction.
See chapter 4 for a complete list of axis parameters.

Related commands: AGP, SAP, GAP, SGP, GGP, GIO, GCO, CALC, CALCX

Mnemonic: AAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

34 <parameter
number>

<motor number>,

 <don't care>

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Parameter ranges:

Module Parameter number Motor number

TMCM-300/301/302/303/310 s. Table 0..2

TMCM-100 s. Table always 0

Example: Positioning motor #0 by a potentiometer connected to the analogue input #0:

Start: GIO 0,1 // get value of analogue input line 0

CALC MUL, 4 // multiply by 4
AAP 0,0 // transfer result to target position of motor 0
JA Start // jump back to start

Binary format of the AAP 0,0 command:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $22 $00 $00 $00 $00 $00 $00 $23

 TMCL Reference Manual 45

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.30 AGP – Accumulator to Global Parameter
Description: The content of the accumulator register is transferred to the specified global parameter. For practical
usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been
modified by the CALC or CALCX (calculate) instruction. Note that the global parameters in bank 0 are EEPROM-only
and thus should not be modified automatically by a stand-alone application.

See chapter 6 for a complete list of global parameters.

Related commands: AAP, SGP, GGP, SAP, GAP, GIO

Mnemonic: AGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

35 <parameter
number>

<bank number> (don't care)

Reply in direct mode:

STATUS VALUE

100 – OK (don't care)

Example: copy accumulator to TMCL user variable #3

Mnemonic: AGP 3, 2

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $23 $03 $02 $00 $00 $00 $00 $29

 TMCL Reference Manual 46

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.31 CLE – Clear Error Flags
Description: This command clears the internal error flags. It is intended for use in stand-alone mode only and
must not be used in direct mode. The following error flags can be cleared by this command (determined by the
<flag> parameter):

 ALL: clear all error flags.

 ETO: clear the timeout flag.

 EAL: clear the external alarm flag

 EDV: clear the deviation flag (modules with encoder feedback only, e.g. TMCM-100)

 EPO: clear the position error flag (modules with encoder feedback only, e.g. TMCM-100)

Related commands: JC

Mnemonic: CLE <flags>
 where <flags>=ALL|ETO|EDV|EPO

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

36 0 – (ALL) all flags
1 – (ETO) timeout flag
2 – (EAL) alarm flag
3 – (EDV) deviation flag
4 – (EPO) position flag
5 – (ESD) shutdown flag

(don't care) (don't care)

Example: Reset the timeout flag

Mnemonic: CLE ETO

Binary:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Instruction
Number

Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $01 $24 $01 $00 $00 $00 $00 $00 $26

 TMCL Reference Manual 47

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.32 User definable commands (UF0..UF7)
Description: The user definable functions UF0 through UF7 are predefined, "empty" functions for user specific
purposes. Contact TRINAMIC for customer specific programming of these functions.

Internal function: Call user specific functions implemented in “C” by TRINAMIC.

Related commands: none

Mnemonic: UF0 .. UF7

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

64…71 (user defined) (user defined) (user defined)

Reply in direct mode:

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 (user
defined)

64…71 (user
defined)

(user
defined)

(user
defined)

(user
defined)

<checksum
>

 TMCL Reference Manual 48

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.33 Request target position reached event
Description: This command is the only exception to the TMCL protocol, as it sends two replies: one immediately
after the command has been executed (like all other commands also), and one additional reply that will be sent
when the specified motors have reached their target positions. This command can only be used in direct mode (in
stand alone mode, this is covered by the WAIT command) and hence does not have a mnemonic. Its opcode is
138.
This command is avialable since firmware version 3.26 (on the TMCM-301/302/303/310/110/109/111/112 modules)
resp. firmware version 6.24 (on the TMCM-610/611/612/101/102 modules).

Internal function: Send an additional reply when one or more motors have reached their target positions. Only
usable in direct mode.

Mnemonic: ---

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

138 (don’t care) (don’t care) Motor bit mask

The contents of the “value” field is a bit mask where every bit stands for one motor: bit 0 = motor 0, bit 1 = motor
1, and so on. The additional reply will be sent when all motors for which the bits in the bit mask are set have
reached their target positions.

Reply in direct mode (right after execution of this command):

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 100 138 $00 $00 $00 Motor bit
mask

<checksum
>

Additonal reply in direct mode (after motors have reached their target positions):

Byte Index 0 1 2 3 4 5 6 7 8

Function Target-
address

Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Checksum

Value (hex) $02 $01 128 138 $00 $00 $00 Motor bit
mask

<checksum
>

 TMCL Reference Manual 49

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.34 BIN – Return to Binary Mode
Description: This command can only be used in ASCII mode. It quits the ASCII mode and returns to binary mode.
It is available in version 3.21 or higher.

Related Commands: none

Mnemonic: BIN

Binary representation: This command does not have a binary representation as it can only be used in ASCII

mode.

 TMCL Reference Manual 50

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

3.35 TMCL Control Functions
Description: The following functions are for host control purposes only and are not allowed for stand-alone
mode. In most cases, there is no need for the customer to use one of those (except command 139). They are

mentioned here only for reasons of completeness. These commands have no mnemonics, as they can not be used
in TMCL programs.
They are to be used only by the TMCL IDE to communicate with the module, for example to download a TMCL
application into the module. The only control commands that could be useful for a user host application is “get
firmware revision” (command 136, please note the special reply format of this command, described at the end of
this section) and 129 (run application).
All other functions can be achieved by using the appropriate functions of the TMCL IDE.

Instruction Description Type Mot/Bank Value

128 – stop application a running TMCL standalone
application is stopped

(don't care) (don't care) (don't care)

129 – run application TMCL execution is started (or
continued)

0 - run from
current address
1 - run from
specified address

(don't care) (don't care)

starting address

130 – step application only the next command of a
TMCL application is executed

(don't care) (don't care) (don't care)

131 – reset application the program counter is set to
zero, and the standalone
application is stopped (when
running or stepped)

(don't care) (don't care) (don't care)

132 – start download
 mode

target command execution is
stopped and all following
commands are transferred to
the TMCL memory

(don't care) (don't care) starting address of
the application

133 – quit download
 mode

target command execution is
resumed

(don't care) (don't care) (don't care)

134 – read TMCL
 memory

the specified program memory
location is read

(don't care) (don't care) <memory address>

135 – get application
 status

one of these values is
returned:
0 – stop
1 –run
2 – step
3 - reset

(don't care) (don't care) (don't care)

136 – get firmware
 version

return the module type and
firmware revision either as a
string or in binary format

0 – string
1 – binary

(don’t care) (don’t care)

137 – restore factory
 settings

reset all settings stored in the
EEPROM to their factory
defaults
This command does not send
back a reply.

(don’t care) (don’t care) must be 1234

138 – reserved

139 – enter ASCII
 mode

Enter ASCII command line (see
chapter 2.5)

(don’t care) (don’t care) (don’t care)

 TMCL Reference Manual 51

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Special reply format of command 136:

 Type set to 0: reply as a string:

Byte index Contents

1 Host Address

2..9 Version string (8 characters, e.g. “303V2.48”

There is no checksum in this reply format! To get also the last byte when using the CAN bus interface, just send
this command in an eight byte frame instead of a seven byte frame. Then, eight bytes will be sent back, so you
will get all characters of the version string.

 Type set to 1: version number in binary format: Here, the normal reply format is used. The version number is
output in the “value” field of the reply in the following way:

Byte index in value field Contents

1 Version number, low byte

2 Version number, high byte

3 Type number, low byte
(currently not used)

4 Type number, high byte
(currently not used)

 TMCL Reference Manual 52

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

4 Axis Parameters
The following sections describe all axis parameters that can be used with the SAP, GAP, AAP, STAP and RSAP
commands. Please note that some parameters are different with different module types. The letters under “access”
mean: R = readable (GAP), W = writable (SAP), E = automatically restored from EEPROM after reset or power-on.

4.1 Basic axis parameters (all TMCL stepper motor modules except
the TMCM-100 module and the Monopack 2)

The parameters described in the following table are those which are needed very often. Please note that the
TMCM-100 module uses a different parameter set (see chapter 4.3), but all other TMCL stepper motor modules use
these parameters.

Number Axis Parameter

Description Range Access

0 target (next) position The desired position in position mode (see ramp mode,
no. 138).

 223 RW

1 actual position The current position of the motor. Should only be
overwritten for reference point setting.

 223 RW

2 target (next) speed The desired speed in velocity mode (see ramp mode, no.
138). In position mode, this parameter is set by
hardware: to the maximum speed during acceleration,
and to zero during deceleration and rest.

2047 RW

3 actual speed The current rotation speed. Should never be overwritten. 2047 R

4 maximum positioning
speed

Should not exceed the physically highest possible value.
Adjust the pulse divisor (no. 154), if the speed value is
very low (<50) or above the upper limit. See TMC 428
datasheet (p.24) for calculation of physical units.

0...2047 RWE

5 maximum acceleration The limit for acceleration (and deceleration). Changing
this parameter requires re-calculation of the acceleration
factor (no. 146) and the acceleration divisor (no.137),
which is done automatically. See TMC 428 datasheet
(p.24) for calculation of physical units.

0... 2047 RWE

6 absolute max. current The most important motor setting, since too high values
might cause motor damage! Note that on the TMCM-300
the phase current can not be reduced down to zero due
to the Allegro A3972 driver hardware.
On the TMCM-300, 303, 310, 110, 610, 611 and 612 the
maximum value is 1500 (which means 1.5A).
On all other modules the maximum value is 255 (which
means 100% of the maximum current of the module).

0…1500
resp.
0..255

RWE

7 standby current The current limit two seconds after the motor has
stopped.
The value range of this parameter is the same as with
parameter 6.

0..1500
resp.
0..255

RWE

8 target pos. reached Indicates that the actual position equals the target
position.

0/1 R

9 ref. switch status The logical state of the reference (left) switch.
See the TMC 428 data sheet for the different switch
modes. Default is two switch mode: the left switch as
the reference switch, the right switch as a limit (stop)
switch.

0/1 R

10 right limit switch status The logical state of the (right) limit switch. 0/1 R

 TMCL Reference Manual 53

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Axis Parameter

Description Range Access

11 left limit switch status The logical state of the left limit switch (in three switch
mode)

0/1 R

12 right limit switch disable if set, deactivates the stop function of the right switch 0/1 RWE

13 left limit switch disable deactivates the stop function of the left switch resp.
reference switch if set.

0/1 RWE

14 steprate prescaler Currently not used, see parameters no. 153 and 154

4.2 Advanced axis parameters (all TMCL stepper motor modules
except the TMCM-100)

These parameters are only needed if the desired needs can not be met by setting the basic parameters listed in
section 4.1. Some of these parameters influence the TMC428 directly so that advanced understanding of the
TMC428 chip is needed. There are even some parameters that should only be changed if recommended by
TRINAMIC. Please note that these paramters are not available on the TMCM-100 module.

Number Parameter

Description Range Access

130 minimum speed Should always be set 1 to ensure exact reaching of the
target position. Do not change!

0... 2047 RWE

135 actual acceleration The current acceleration (read only). 0... 2047 R

136 acceleration threshold specifies the threshold between low and high acceleration
values for the parameters 144&145. Normally not needed.

0... 2047 RWE

137 acceleration divisor A ramping parameter, can be adjusted in special cases,
automatically calculated by setting the maximum
acceleration (e.g. during normal initialisation). See the
TMC428 data sheet for details. Normally no need to change.

0…13 RWE

138 ramp mode In version 2.16 and later: automatically set when using ROR,
ROL, MST and MVP.
0: position mode. Steps are generated, when the parameters
actual position and target position differ. Trapezoidal speed
ramps are provided.
2: velocity mode. The motor will run continuously and the
speed will be changed with constant (maximum)
acceleration, if the parameter "target speed" is changed.
For special purposes, the soft mode (value 1) with
exponential decrease of speed can be selected.

0/1/2 RWE

139 interrupt flags Must not be modified. See the TMC 428 datasheet for details. 16bits RW

 TMCL Reference Manual 54

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Parameter

Description Range Access

140 microstep resolution 0 – full step *)
1 – half step *)
2 – 4 microsteps
3 – 8 microsteps
4 – 16 microsteps
5 - 32 microsteps
6 – 64 microsteps
Note that modifying this parameter will affect the rotation
speed in the same relation.
Note that modifying this parameter will affect the rotation
speed in the same relation. Even if the module is specified
for 16 microsteps only, switching to 32 or 64 microsteps still
brings an enhancement in resolution and smoothness. The
position counter will use the full resolution, but, however,
the motor will resolve a maximum of 24
different microsteps only for the 32 or 64 microstep units.
*) Please note that the fullstep setting as well as the half
step setting are not optimized for use without an adapted
microstepping table. These settings just step through the
microstep table in steps of 64 respectively 32. To get real
full stepping use axis parameter 211 or load an adapted
microstepping table.

0…6 RWE

141 ref. switch tolerance For three-switch mode: a position range, where an
additional switch (connected to the REFL input) won't cause
motor stop. See section 6.1 for details.

0...4095 RW

142 snapshot position For referencing purposes, the exact position at hitting of the
reference switch can be captured in this parameter. A
dummy value has to be written first to prepare caption.

 223 RW

143 max. current at rest In contrast to the standby current, this current limit
becomes immediately active when the motor speed reaches
zero. The value represents a fraction of the absolute
maximum current:
0 – no change of current at rest (default, 100%)
1..7 – 12.5%..87.5%
See the TMC428 datasheet for details. Normally not used,
use parameters 6 and 7 instead!

0…7

RWE

144 max. current at low
accel.

An optional current reduction factor, see parameters 136 and
143 for details. Normally not used, use parameters 6 and 7
instead!

0…7 RWE

145 max. current at high
accel.

An optional current reduction factor, see parameters 136 and
143 for details. Normally not used, use parameters 6 and 7
instead!

0…7 RWE

146 acceleration factor A ramping parameter, can be adjusted in special cases,
automatically calculated by setting the maximum
acceleration (e.g. during normal initialisation). See the
TMC428 data sheet for details. Normally no need to change.

0…128 RWE

147 ref. switch disable
flag

If set, the reference switch (left switch) won't cause the
motor to stop. See parameters 12 and 13.

0/1 RWE

148 limit switch disable
flag

If set, the limit switch (right switch) won't cause the motor
to stop. See parameters 12 and 13.

0/1 RWE

149 soft stop flag If cleared, the motor will stop immediately (disregarding
motor limits), when the reference or limit switch is hit.

0/1 RWE

 TMCL Reference Manual 55

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Parameter

Description Range Access

150 (reserved) Do not change! 0/1 R

151 position latch flag Indicates that a position snapshot has been completed (see
parameter 142).

0/1 R

152 interrupt mask Must not be modified. See the TMC 428 datasheet for details. (16bits) R

153 ramp divisor The exponent of the scaling factor for the ramp generator-

should be de/incremented carefully (in steps of one).
0…13 RWE

154 pulse divisor The exponent of the scaling factor for the pulse (step)

generator – should be de/incremented carefully (in steps of
one).

0…13 RWE

193 referencing mode 1 – Only the left reference switch is searched.
2 – The right switch is searched, then the left switch is
searched.
3 – Three-switch-mode: the right switch is searched first,
then the reference switch will be searched.
Please see chapter 6.1 for details on reference search.

1/2/3 RWE

194 referencing search
speed

For the reference search this value specifies the search
speed as a fraction of the maximum velocity:
0 – full speed
1 – half of the maximum speed
2 – a quarter of the maximum speed
3 – 1/8 of the maximum speed (etc.)
On the TMCM-34x modules the speed is given directly as a
value between 0..2047.

0…8

M-34x:
0..2047

RWE

195 referencing switch
speed

Similar to parameter no. 194, the speed for the switching
point calibration can be selected.
On the TMCM-34x modules the speed is given directly as a
value between 0..2047.

0..8

M-34x:
0..2047

RWE

196 (reserved) Do not change!

197 (reserved) Not used 0…215 RWE

198 driver off time A special adjustment of the motor driver A3972 (TMCM-300
only). Low values may cause more mechanical vibrations,
while the higher ones lead to acoustic noise of the drivers.
The default value of 20 is a good compromise for most
applications. See the Allegro A3972 datasheet for details.

0…31 RWE

200 fast decay time A special adjustment of the motor driver A3972 (TMCM-300
only), with less influence than the driver off time (no. 198)
in most cases. Low values generally reduce driver noise. See
the Allegro A3972 datasheet for details.

0…15 RWE

203 mixed decay threshold If the actual velocity is above this threshold, mixed decay
will be used (all modules except the TMCM-300). Since
V3.13, this can also be set to –1 which turns on mixed decay
permanently also in the rising part of the microstep wave.
This can be used to fix microstep errors.

0..2048
or -1

RWE

204 freewheeling Time after which the power to the motor will be cut when
its velocity has reached zero (TMCM-301 / 303 / 310 / 11x
and 61x only).

0..65535
0 = never

RWE

205 Stall Detection
Threshold

Stall detection threshold. Only usable on modules equipped
with TMC246 or TMC249 motor drivers. Set it to 0 for no stall
detection or to a value between 1 (low threshold) and 7
(high threshold). The motor will be stopped if the load value
exceeds the stall detection threshold. Switch off mixed decay
to get usable results.

0..7 RWE

 TMCL Reference Manual 56

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Parameter

Description Range Access

206 Actual Load Value Readout of the actual load value used for stall detection.
Only usable on modules equipped with TMC246 or TMC249
motor drivers. On other modules this value is undefined.

0..7 R

208 Driver Error Flags TMC236 Error Flags R

209 Encoder Position
(V3.21 or higher)

The value of an encoder register of a TMCM-323 module
connected to a TMCM-30x module can be read or written.
Please see the TMCM-323 manual for details.

 RW

210 Encoder Pre-scaler
(V3.21 or higher)

Pre-scaler for an encoder connected to a TMCM-323 module.
Please see the TMCM-323 manual for details. This value can
not be read back!
This setting is also available on the TMCM-611, TMCM-101
and TMCM-102 modules. Please see the manuals of these
modules for the meaning of these parameter on a specific
module.

 W

211 Fullstep Threshold
(V3.26 or higher)

When exceeding this speed the driver will switch to real full
step mode. To disable this feature set this parameter to zero
or to a value greater than 2047.
Setting a full step threshold allows higher motor torque of
the motor at higher velocity. When experimenting with this
in a given application, try to reduce the motor current in
order to be able to reach a higher motor velocity!

0..2048 RWE

212 Maximum Encoder
Deviation

When the actual position (parameter 1) and the encoder
position (parameter 209) differ more than set here the motor
will be stopped. This function is switched off when the
maximum deviation is set to zero.
Only on TMCM-101, TMCM-102 and TMCM-611 modules.

0..65535 RWE

213 Group index All motors on one module that have the same group index
will also get the same commands when a ROL, ROR, MST,
MVP or RFS is issued for one of these motors. Only on
TMCM-610, TMCM-611, TMCM-612 and TMCM-34x modules.

0..255 RW

4.3 Axis parameters on the TMCM-100 and on the Monopack 2
The axis parameters on the TMCM-100 module and on the Monopack 2 with TMCL differ from those on the other
modules. There are no “advanced” axis parameters on the TMCM-100 module.

Number Parameter

Description Range Access

0 Target position Read: The target position of a currently executed
ramp.
Write: Same function as a MVP ABS command.

-8388608..
+8388607

RW

1 Actual position Read: The actual position of the motor.
Write: Change the position and encoder counter
without moving the motor.

-8388608..
+8388607

RW

2 Target velocity Write: value >0: same function as ROR
value <0: same function as ROL
value =0: same function as MST
Read: not possible

-8191..
+8191

W

3 Actual velocity The actual velocity of the motor.
Write access not possible.

-8191..
+8191

R

4 Max. positioning
velocity

The maximum velocity used when executing a ramp
to a position. Do not set to zero!

1..8191 RWE

5 Max. acceleration The maximum acceleration used to accelerate or 1..8191 RWE

 TMCL Reference Manual 57

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Parameter

Description Range Access

decelerate the motor. Do not set to zero!

6 Current at constant
rotation

Maximum current when moving with constant velocity
(255 => 100%).

0 .. 255 RWE

7 Current at standby Current when the motor is standing
(255 => 100%).

0..255 RWE

8 Position reached flag Reads 1 when the actual position equals the target
position. Write access not possible.

0/1 R

9 Reference switch status The logical state of the reference switch (connected to
the SYNC_IN pin).

0/1 R

10 Right stop switch status The logical state of the right stop switch.
Write access not possible.

0/1 R

11 Left stop switch status The logical state of the left stop switch.
Write access not possible.

0/1 R

12 Stop switch disable Deactivates the function of both stop switches when
set to 1.

0/1 RWE

13 Stop switch disable Same function as parameter #12. 0/1 RWE

14 Step rate prescaler Prescaler for the step rate, determines the maximum
step frequency.

0..15 RWE

15 Bow The bow parameter of the ramp function. Do not set
to zero!

1..8191 RWE

16 Microstep resolution The number of microsteps to be used.
1..64: 1..64 microsteps
65: 100 microsteps
66: 202 microsteps
67: 406 microsteps

1..67 RWE

17 Microstep waveform The microstep waveform to be used. -127..+127 RWE

18 Step/direction mode Activates the step/direction input when set to 1 (the
module then works as a step / direction sequencer).

0/1 RWE

19 Step pulse length The length of the step pulses at the step / direction
output.

0..3 RWE

20 Phases Set to 2 for two phase motors (default) or to 3 for 3
phase motors (currently not usable).

2/3 RWE

21 Current at acceleration Current when the motor is accelerating or
decelerating (255 => 100%).

0..255 RWE

22 Reference search mode
(s. section 6.2)

0: Separate stop and reference switches.
1: Same switch for stop and reference point.
2: Circular mode: Only one reference switch, search
the switch from both sides.

0/1/2 RWE

23 Reference search
velocity

Velocity used for reference searching. If the velocity is
negative the right switch will be searched instead of
the left switch.

-8191..
+8191

RWE

24 Stop Switch
Deceleration

Deceleration when touching a stop switch. A value of
0 means a hard stop.

0..8191 RWE

25 Encoder Position Actual position of the encoder (read only). R

26 Encoder Configuration Bit 0: polarity of the encoder N signal.
Bit 1: the next N signal clears the encoder position
counter.
Bit 4: set this bit to copy the actual encoder value to
the position register (bit resets automatically).
Bit 6: direction of the encoder signals
(1: A->B, 0: B->A).

 RWE

27 Encoder Predivider Predivider for the incremental encoder. 0..255 RWE

 TMCL Reference Manual 58

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Parameter

Description Range Access

28 Encoder Multiplier Multiplier for the incremental encoder. 1..255 RWE

29 Maximum deviation Maximum deviation between motor and incremental
encoder.

0..65535 RWE

30 Deviation action 0: Disabled
1: Alarm, but no stop
2: Soft Stop
3: Hard Stop

0/1/2/3 RWE

31 Correction delay Automatic correction after deviation alarm:
0: Disabled.
>0: 1/100s until correction starts.

0..65535 RWE

32 Correction retries Number of retries when automatic position correction
is done.
0: Disabled, >0: number of retries.

0..255 RWE

33 Correction tolerance Tolerance around the target position. 0..65535 RWE

34 Correction velocity Velocity used for automatic position correction. 1..8191 RWE

 TMCL Reference Manual 59

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

5 Global Parameters
The global parameters apply for all types of TMCM modules. They are grouped into 3 banks: bank 0 (global
configuration of the module), bank 1 (user C variables) and bank 2 (user TMCL variables). The letters under “access”
mean: R = readable (GGP), W = writeable (SGP), E = automatically restored from EEPROM after reset or power-on.
Use SGP and GGP (see sections 3.9 and 3.10) commands to write and read global parameters.

5.1 Bank 0
These parameters affect the global configuration of the module. The parameters 0..38 exist only on TMCM-300 / 301
/ 302 / 303 / 310 / 610 modules and must normally not be set by the user. They should never be changed on
TMCM-300, TMCM-302, TMCM-303, TMCM-310 and TMCM-610 modules. On TMCM-301 modules these parameters can
be changed to adapt the module to specific motor drivers. It is best to set these parameters by using the
appropriate functions of the TMCL DIE and not by entering many SGP commands (the TMCL IDE does this
automatically). The parameters 0..38 are only mentioned here in short form, for completeness. They are not
available on TMCM-100 modules.

Number Parameter

0 Datagram low word (read only)

1 Datagram high word (read only)

2 Cover datagram position

3 Cover datagram length

4 Cover datagram contents

5 Reference switch states (read only)

6 TMC428 SMGP register

7..22 Driver chain configuration long words 0..15

23..38 Microstep table long word 0..15

 An STGP 23, 0 command will store the entire microstep table, and an STGP 7, 0 command will store the entire
driver chain configuration table. Use the appropriate functions of the TMCL IDE to change these parameters
interactively, if really necessary! Take extreme care when doing this, as wrong configurations here may cause
damage to the motor drivers! The TMCM-301 modules is the only device where changes may be necessary
(when using it with other motor drivers than the TMC236/TMC239 chips).

The following parameters with the numbers from 64 on configure things like the serial address of the module
RS232 / RS485 baud rate or CAN bit rate. Change these parameters to meet your needs. The best and easiest way
to do this is to use the appropriate functions of the TMCL IDE. The parameters with numbers between 64 and 128
are stored in EEPROM only, so that an SGP command on such a parameter will always store it permanently (no
extra STGP command needed).
Take care when changing these parameters, and use the appropriate functions of the TMCL IDE to do it in an
interactive way!

Number Global parameter

Description Range Access

64 EEPROM magic Setting this parameter to a different value as $E4 will
cause re-initialisation of the axis and global parameters
(to factory defaults) after the next power up. This is
useful in case of miss-configuration.

0…255 RWE

 TMCL Reference Manual 60

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Global parameter

Description Range Access

65 RS232 and RS485 baud
rate

0 – 9600 baud (default)
1 – 14400 baud
2 – 19200 baud
3 – 28800 baud
4 – 38400 baud
5 – 57600 baud
6 – 76800 baud Caution: Not supported by Windows!
7 – 115200 baud Caution: 115200 does not work with

most host PCs, as the baud rate error on the modules is
too high with this baud rate (-3.5% baud rate error).

0…7 RWE

66 Serial address The module (target) address for RS-232 and RS-485. 0…255 RWE

67 ASCII mode
(available since version
3.21)

Configure the TMCL ASCII interface:
Bit 0: 0 – start up in binary (normal) mode
 1 – start up in ASCII mode
Bits 4 and 5:
00 – Echo back each character
01 – Echo back complete command
10 – Do not send echo, only send command reply

 RWE

68 Reserved (currently not used, do not change!) RWE

69 CAN bit rate 1 – 10kBit/s
2 – 20kBit/s
3 – 50kBit/s
4 – 100kBit/s
5 – 125kBit/s
6 – 250kBit/s (default)
7 – 500kBit/s
8 – 1000kBit/s (not supported by TMCM-30x/110/111/112)

1..7 RWE

70 CAN reply ID The CAN ID for replies from the board (default: 2) 0..7ff RWE

71 CAN ID The module (target) address for CAN (default: 1) 0..7ff RWE

72 System error mask (currently not used, do not change!) RWE

73 Configuration EEPROM
lock flag

Write: 1234 to lock the EEPROM, 4321 to unlock it.
Read: 1=EEPROM locked, 0=EEPROM unlocked.

0/1 RWE

74 Encoder interface
(available since version
3.21)

Determines if a TMCM-323 is connected to the external
SPI interface and to which SPI_SEL line it is connected:
0 – No TMCM-323 connected
1 – Connected to SPI_SEL0
2 – Connected to SPI_SEL1
3 – Connected to SPI_SEL2
Please see TMCM-323 manual for details!

 RWE

75 Telegram pause time Pause time before the reply via RS232 or RS485 will be
sent. For RS232 set to 0, for RS485 it is often necessary
to set it to 15 (for RS485 adapters controlled by the RTS
pin).
For CAN or IIC interface this parameter has no effect!

0…255 RWE

76 Serial host address Host address used in the reply telegrams sent back via
RS232 or RS485.

0..255 RWE

77 Auto start mode 0: Do not start TMCL application after power-up (default).
1: Start TMCL application automatically after power-up.

0/1 RWE

78 Poll interval (currently not used, do not change!) --- ---

79 Port function mask (currently not used, do not change!) --- ---

 TMCL Reference Manual 61

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Number Global parameter

Description Range Access

80 Shutdown pin
functionality

Select the functionality of the SHUTDOWN pin (not with
TMCM-300).
0 – no function
1 – high active
2 – low active

0..2 RWE

81 TMCL code protection Protect a TMCL program against disassembling or
overwriting.
0 – no protection
1 – protection against disassembling
2 – protection against overwriting
3 – protection against disassembling and overwriting
Note: When a user tries to switch off the protection
against disassembling, the program will be erased first!
So, when changing this value from 1 or 3 to 0 or 2, the
TMCL program will be erased.

0,1,2,3 RWE

128 TMCL application status 0 –stop
1 – run
2 – step
3 – reset

0..3 R

129 Download mode 0 – normal mode
1 – download mode

0/1 R

130 TMCL program counter The index of the currently executed TMCL instruction. R

131 Application error flags (currently not used) --- ---

132 Tick timer A 32 bit counter that gets incremented by one every
millisecond. It can also be reset to any start value.

 RW

 TMCL Reference Manual 62

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

5.2 Bank 1
The global parameter bank 1 contains a set of variables that are mainly intended for use in customer specific
extensions to the firmware. So, together with the user definable commands (see section 3.32) these variables form
the interface between extensions to the firmware (written in C) and a TMCL application. Although they could also
be used as general purpose variables in TMCL programs, it is much better to use the variables in bank 2 (see
section 5.3) for this purpose.
These parameters are not available on the TMCM-34x modules.

Number Global parameter

Description Range Access

0 C application state The main state machine variable of
the example user C code.

0…255 RW

1 (not used) 0…255 RW

2 C application state timer A universal timer, supposed for state
timing purposes.

0…255 RW

3 C application general purpose variable
"unsigned char #0"

 0…255 RWE

4 C application general purpose variable
"unsigned char #1"

 0…255 RWE

5 C application general purpose variable
"unsigned char #2"

 0…255 RWE

6 C application general purpose variable
"unsigned int #0"

 0…216 RWE

7 C application general purpose variable
"unsigned int #1"

 0…216 RWE

8 C application general purpose variable
"unsigned int #2"

 0…216 RWE

9 C application general purpose variable
"signed long #0"

 -231…+231 RWE

10 C application general purpose variable
"signed long #1"

 -231…+231 RWE

11 C application general purpose variable
"signed long #2"

 -231…+231 RWE

 TMCL Reference Manual 63

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

5.3 Bank 2
Bank 2 contains general purpose 32 bit variables for the use in TMCL applications. They are located in RAM and can
be stored to EEPROM. After booting, their values are automatically restored to the RAM. By default, 20 variables are
available, but the number may be increased in future firmware modification versions. From firmware version 3.17
on, 56 user variables are available.

 Number Global parameter

Description Range Access

0 General purpose variable #0 for use in TMCL applications -231…+231 RWE

1 General purpose variable #1 for use in TMCL applications -231…+231 RWE

2 General purpose variable #2 for use in TMCL applications -231…+231 RWE

3 General purpose variable #3 for use in TMCL applications -231…+231 RWE

4 General purpose variable #4 for use in TMCL applications -231…+231 RWE

5 General purpose variable #5 for use in TMCL applications -231…+231 RWE

6 General purpose variable #6 for use in TMCL applications -231…+231 RWE

7 General purpose variable #7 for use in TMCL applications -231…+231 RWE

8 General purpose variable #8 for use in TMCL applications -231…+231 RWE

9 General purpose variable #9 for use in TMCL applications -231…+231 RWE

10 General purpose variable #10 for use in TMCL applications -231…+231 RWE

11 General purpose variable #11 for use in TMCL applications -231…+231 RWE

12 General purpose variable #12 for use in TMCL applications -231…+231 RWE

13 General purpose variable #13 for use in TMCL applications -231…+231 RWE

14 General purpose variable #14 for use in TMCL applications -231…+231 RWE

15 General purpose variable #15 for use in TMCL applications -231…+231 RWE

16 General purpose variable #16 for use in TMCL applications -231…+231 RWE

17 General purpose variable #17 for use in TMCL applications -231…+231 RWE

18 General purpose variable #18 for use in TMCL applications -231…+231 RWE

19 General purpose variable #19 for use in TMCL applications -231…+231 RWE

20..55 General purpose variables
#20..#55
(TMCL Version 3.17 or higher)

for use in TMCL applications -231…+231 RWE

 TMCL Reference Manual 64

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

6 Hints and Tips
This chapter gives some hints and tips on using the functionality of TMCL, for example how to use and
parameterize the built-in reference point search algorithm or the incremental encoder interface.

6.1 Reference search with TMCM-3xx / 10x / 11x / 61x modules
The built-in reference search features switching point calibration and support of one or two reference switches.
The internal operation is based on three individual state machines (one per axis) that can be started, stopped and
monitored (instruction RFS, no. 13). The settings of the automatic stop functions corresponding to the switches
(axis parameters 12 and 13) have no influence on the reference search.

Right Stop

Switch
Traveller

Left Stop

Switch

Reference

Switch

Negative

Direction

Positive

Direction

Figure 6.1: Definition of the switches

 Selecting the referencing mode (axis parameter 193): in modes 1 and 2, the motor will start by moving "left"
(negative position counts). In mode 3 (three-switch mode), the right stop switch is searched first to distinguish
the left stop switch from the reference switch by the order of activation when moving left (reference switch
and left limit switch share the same electrical function).

 Until the reference switch is found for the first time, the searching speed is identical to the maximum
positioning speed (axis parameter 4), unless reduced by axis parameter 194.

 After hitting the reference switch, the motor slowly moves right until the switch is released. Finally the switch
is re-entered in left direction, setting the reference point to the center of the two switching points. This low
calibrating speed is a quarter of the maximum positioning speed by default (axis parameter 195).

 In Figure 6.2 the connection of the left and the right limit switch is shown. Figure 6.3 shows the connection
of three switches as left and right limit switch and a reference switch for the reference point. The reference
switch is connected in series with the left limit switch. The differentiation between the left limit switch and
the reference switch is made through software. Switches with open contacts (normally closed) are used.

 In circular systems there are no end points and thus only one reference switch is used for finding the
reference point.

left stop

sw itch

right stop

sw itch

REF_L_x REF_R_x

motor

traveller

Figure 6.2: Two limit switches

left stop

sw itch

reference

sw itch

right stop

sw itch

REF_L_x REF_R_x

motor

traveller

Figure 6.3: Limit switches with extra
reference switch

motor

ref sw itch
eccentric

REF_L_x

Figure 6.4: Circular system

 TMCL Reference Manual 65

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

6.2 Reference search with TMCM-100 modules
The behaviour of the reference search depends on the reference search mode setting (axis parameter #22, section
4.3) and is as follows:

 Mode 0: Linear mode, reference switch is also end switch: A move into the reference switch and then out
of the reference switch is executed. The zero position is then set to the beginning of the switch.

 Mode 1: Linear mode, separate reference switch and end switch: First, the left or the right stop switch
(specified by the sign of the reference search velocity; value>0: left switch, value<0: right switch) is
searched. After that, the reference switch is searched at first from one, then from the other side. The zero
position is then set to the middle of the reference switch.

Right Stop

Switch
Traveller

Left Stop

Switch

Reference

Switch

Negative

Direction

Positive

Direction

Figure 6.5: A linear drive (use mode 1)

 Mode 2: Circular mode: The reference switch (connected to the reference switch input) is searched at first
from one and then form the other side. The zero position is then set to the middle of the reference
switch. There are no end points.

Traveller

Reference

Switch

Figure 6.6: A circular drive (use mode 2)

The velocity of the reference search is specified by axis parameter #23 (section 4.3). Start the reference search with
a RFS START command. The reference search can be aborted by a RFS STOP command. To query if the reference
search is still running in direct mode, use a RFS STATUS command. In a stand-alone TMCL program, use WAIT RFS
to wait until a reference search has finished.
The reference switch always has to be connected to the “SYNC IN” pin of the module.

6.3 Using an incremental encoder with TMCM-100 modules
Using an incremental encoder allows exact position control, as it feeds back the steps of the motor into the
module. The module can then detect deviations and can also try to correct such deviations automatically. The
deviation detection and the automatic position correction after a deviation has occurred are easy to use features
that automatically detect and correct any errors during a movement.

6.3.1 Setting the resolution
The resolution of the encoder (pulses per revolution) must match the resolution of the motor to make deviation
detection and automatic position correction function correctly. If the resolutions do not match, they can be
adapted by changing one or more of the following parameters using GAP commands:

 Microstep resolution (axis parameter #16, section 4.3): This parameter changes the resolution of the motor.

 Encoder pre-divider (axis parameter #27, section 4.3): This can be used if the resolution of the encoder is
higher than the resolution of the motor. When for example the pre-divider is set to 4, only every 4th pulse of
the encoder will be used to increment or decrement the encoder counter register.

 TMCL Reference Manual 66

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

 Encoder multiplier (axis parameter #28, section 4.3): This can be used if the resolution of the encoder is lower
than the resolution of the motor. When for example the multiplier is set to 5, every encoder pulse will
increment or decrement the encoder counter register by 5.

To find the right combination of the parameters you can just let the motor run for example 10000 steps (using an
MVP command in direct mode, with deviation detection and automatic position correction switched off) and then
watch the encoder counter register (using GAP 25, 0). Before doing that, use a SAP 1,0,0 command to set all
position registers to zero.

6.3.2 Deviation detection
This function can be configured using axis parameters #29, #30 and #31. An error flag (EDV, see also section 3.18
and 3.31) will be set when the maximum deviation between motor and encoder is exceeded. Optionally the motor
can also be stopped then. Set the maximum deviation using parameter #29. The motor can also be stopped
immediately or softly when in case of deviation (parameter #30). Furthermore, the automatic position correction
(see) can be started n/10 sec (n=1..65535, parameter #31) after a deviation has been detected.

6.3.3 Position correction
Automatic position correction can be done at the end of each ramp or when a deviation has been detected.
Automatic position correction can only be used in conjunction with an incremental encoder which has to be
configured correctly first.
When this function is turned on (by setting axis parameter #32 to a value greater than zero), the module checks if
the position counter of the incremental encoder matches the desired end position at the end of every ramp (a
tolerance window around the end position can be specified by axis parameter #33). If this is not the case, the
module will try to correct the position of the motor using the velocity specified by axis parameter #34. The
maximum number of retries after each ramp can also be configured by setting axis parameter #32. The EPO flag
(see also section 3.18 and 3.31) will be set and the position correction will be aborted if this number is exceeded.

6.4 Stall Detection (TMCL Version 3.06 or higher)
The modules TMCM-303, TMCM-310 and TMCM-610 can be equipped with TMC246 motor driver chips. These chips
feature load measurement that can be used for stall detection. Stall detection means that the motor will be
stopped when the load gets too high. It is controlled by axis parameter #205. If this parameter is set to a value
between 1 and 7 the stall detection will be activated. Setting it to 0 means that stall detection is turned off. A
greater value means a higher threshold. This also depends on the motor and on the velocity. There is no stall
detection while the motor is being accelerated or decelerated.
Stall detection can also be used with a TMCM-301 module together with a TMCM-035 module that is equipped with
a TMC249 chip.
Stall detection can also be used for finding the reference point. You can do this by using the following TMCL code:

 SAP 205, 0, 5 //Turn on Stall Detection (use other threshold if needed)

 ROL 0, 500 //Let the motor run (or use ROR or other velocity)

Loop: GAP 3, 0

 COMP 0

 JC NE, Loop //Wait until the motor has stopped

 SAP 1, 0, 0 //Set this position as the zero position

Do not use RFS in this case.
Mixed decay should be switched off when StallGuard operational in order to get usable results.

 TMCL Reference Manual 67

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

6.5 Fixing microstep errors (TMCL V3.13 or higher)
Due to the “zero crossing problem” of the TMC236/TMC246 stepper motor drivers, microstep errors may occur with
some motors as the minimum motor current that can be reached is slightly higher than zero (depending on the
inductivity, resistance and supply voltage of the motor).
This can be solved by setting the “mixed decay threshold” parameter (axis parameter number 203) to the value –1.
This switches on mixed decay permanently, in every part of the microstepping waveform. Now the minimum
reachable motor current is always near zero which gives better microstepping results.
A further optimization is possible by adapting the motor current shape (waveform table, see sections 7.6.2.4 and
7.6.2.5 on how to do that).
Use SAP 203, <m>, -1 to turn on this feature (where <m> stands for the motor number).

6.6 Using the RS485 interface
For using the modules with RS485 interface they must be equipped with at least TMCL version 3.16 (except for
TMCM-110 modules).
With most RS485 converters that can be attached to the COM port of a PC the data direction is controlled by the
RTS pin of the COM port. Please note that this will only work with Windows 2000, Windows XP or Windows NT4,
not with Windows 95, Windows 98 or Windows ME (due to a bug in these operating systems). Another problem is
that Windows 2000/XP/NT4 switches the direction back to “receive” too late. To overcome this problem, set the
“telegram pause time” (global parameter #75) of the module to 15 (or more if needed) by issuing an “SGP 75, 0,
15” command in direct mode. The parameter will automatically be stored in the configuration EEPROM.
For RS232 set the “telegram pause time” to zero for maximum data throughput.

 TMCL Reference Manual 68

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7 The TMCL IDE
The TMCL IDE is an integrated development environment mainly for developing stand-alone TMCL applications, but
it also includes a function for using the TMCL commands in direct mode. The TMCL IDE is a PC application running
under Windows 95/98/NT/2000/XP (Windows 3.x is not supported) that includes

 a text editor for writing and modifying TMCL programs,

 a TMCL assembler for translating TMCL programs from mnemonic to binary format and downloading them into
a module,

 a TMCL disassembler for getting a TMCL application out of a module and translating it back to mnemonic
format,

 a dialogue which allows setting the configuration of a module in an easy, interactive way,

 a dialogue for entering and executing TMCL commands in direct mode,

 a function for updating the firmware of a module.
and many more powerful features.
Please be sure to always use the latest version of the TMCL IDE a its functionality is being extended and improved
constantly.

7.1 Installation
To install the TMCL IDE to your computer, just copy the file “TMCL.EXE” to your hard disk. Then, just double click
the file to start the program.

Fig. 7.1: The TMCL IDE main window

After the first start of the program you should select the “Options...” function from the “Setup” menu (see section
7.6.1.2) and set up the COM port where your TMCM module is connected to. You should not need to change any
other settings.

 TMCL Reference Manual 69

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.2 Getting started
First, try out the TMCL commands in direct mode. Use the “Direct Mode” function for this purpose (see section
7.5.2). After you have successfully tried out the direct mode, have a look at the TMCL sample programs supplied on
the software CD. Load a program, assemble it, download it into a module and run it. Try to understand the TMCL
sample programs. After that you are ready to write your own TMCL programs. Read the chapters 2, 3 and 8 to
learn more about the TMCL programming language.

7.3 The integrated editor
The text editor of the TMCL-IDE mainly provides the functionality of a standard Windows text editor. An additional
function to the Windows standard is Ctrl-Y to delete a line. Some functions of the editor can be found in the “Edit”
menu. It is also possible to edit multiple documents. They are then shown in a workbook style.

7.4 The “File” menu
The file menu provides functions to load and save files. Some functions can also be found in the tool bar below
the menu bar.

7.4.1 New
This function opens a new editor page, so a new file can be created.

7.4.2 Open
After selecting the “Open” function a file selection dialog will be shown. Here you can select a file to be opened.
Then, a new editor page opens and the selected file will be loaded into that editor page.

7.4.3 Save, Save as
Select one of these functions to save the contents of the currently selected editor page into a file. The “Save as”
function allows to save a file using a new name.

7.4.4 Save all
Select this function to save all files that are currently loaded into the editor and have been changed.

7.4.5 Close
The “Close” function closes the actual editor page. This function can also be selected from the context menu of the
editor (click the right mouse button in the editor window to open the context menu).

7.4.6 Exit
Use this function to close the TMCL IDE. The same function can be achieved by closing the main window.

7.5 The “TMCL” menu

7.5.1 Basics
The “TMCL” menu contains all functions needed for assembling, downloading and disassembling TMCL programs. It
also contains the functions to run and stop a TMCL program on a module and to use TMCL commands in direct
mode. Assembling a TMCL program always takes place from the editor. So, a before assembling a TMCL file it must
be loaded into the editor.

 TMCL Reference Manual 70

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.5.2 Direct mode
Select the “Direct Mode” function in the “TMCL” menu to open the “Direct Mode” dialog (Fig. 7.2). The TMCL IDE
then first checks the type of the module that is connected (TMCM-3xx or TMCM-100), as some menus in the direct
mode dialogue differ between TMCM-3xx or TMCM-100 modules. If the type of the module could not be detected
(e.g. because there is no module connected), a little dialogue pops up where you are prompted to select your
module type. Do this by clicking the appropriate button.
By using the direct mode you can send commands to a module that are executed immediately. In the “TMCL
Instruction Selector” area you can select a command and its parameters. Click the “Execute” button in this area to
send the command to the module. The response is then displayed in the “Answer” section. By clicking the “Copy
to editor” button the command mnemonic will be copied to the TMCL editor.
You can also enter the instruction numbers directly in the “Manual Instruction Input” area an execute them by
clicking the appropriate “Execute” button (but this option is needed only very seldom). The “Copy” button in the
“TMCL Instruction Selector” area copies the instruction bytes to the “Manual Instruction Input” area.

Fig. 7.2: The Direct Mode dialog

7.5.3 Assemble a TMCL program
Selecting the “Assemble” function in the “TMCL” menu assembles a file. If more than one files are open and no
main file has been defined the currently selected file will be assembled. If a main file has been selected (see
section 7.5.5) the main file will always be assembled, regardless of the currently selected editor file.
The progress of the assembly is displayed.

Fig. 7.3: The progress of the assembly

If an error occurs, the line containing the error will be highlighted and the assembly will be aborted. The error
message will be displayed in the assembler progress dialog.

 TMCL Reference Manual 71

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.5.4 Downloading the program
After a TMCL program has been successfully assembled, it can be downloaded to the module. Make sure that the
module is connected to a COM port and that the port is selected in the “Options” dialogue. By selecting the
“Download” function the program will then be downloaded into the module. The download progress is shown in
a special window (Fig. 7.4). Downloading can be aborted by clicking the “Abort” button.

Fig. 7.4: The program download progress

7.5.5 The “Main file” function
By using this function you can select a main file. This file is then always used when assembling, regardless of
which file is currently selected in the editor. Click on the “Clear” button in the main file selection dialog to switch
off this function and to always assemble the currently selected editor file again.

Fig. 7.5: The "Main file" dialog

7.5.6 The “Start” function
This functions starts the TMCL program which is currently in the TMCL memory of the module just by sending a
reset and a run command to the module. The module then starts executing the program form the first command
on.

7.5.7 The “Stop” function
This functions sends a stop command to the module and so stops the execution of a TMCL program.

7.5.8 The “Continue” function
This function allows to continue the run of a TMCL program that has previously been stopped. It does this just by
sending a run command to the module (without sending a reset command before). The module then continues
executing the program from the next command before it had been stopped.

7.5.9 Disassembling a TMCL program
The “Disassemble” function reads out the TMCL memory of a module and disassembles its contents. The result is
then written into a new editor page. So this function allows to check the program which is currently in the TMCL
program memory of a module. The progress of downloading the program from the module and the disassembly is
shown in special windows. It can be aborted by clicking the “Abort” button.

 TMCL Reference Manual 72

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Fig. 7.6: Progress of disassembling a TMCL program

7.6 The “Setup” menu

7.6.1 Options
This function provides the “Options” dialogue which allows to set up all global options of the TMCL IDE.

7.6.1.1 Assembler options

The “Assembler” page in the “Options” dialogue provides the assembler options. There are the following options:

 Include file path: The path where the assembler searches for include files included by the #include directive.

 Automatically append a “STOP” command: If this option is ticked, the assembler automatically appends a
“STOP” command at the end of every TMCL program (if the last command in the program is not already a
“STOP” command).

 Generate a symbol file: The assembler generates a text file that contains the address of every label. This can
be useful to start the program from other addresses than 0.

 Write output to binary file: The assembler writes its output also to a binary file. For every command eight
bytes are written (the command with checksum, but without a device address).

Fig. 7.7: Assembler options

7.6.1.2 Connection options

Here the interface type and the port can be selected that are to be used to communicate with a module. First,
select the connection type. In most cases this will be “RS232 / RS485”. If you have a Trinamic CANnes card or
USB2X module and you would like to use the CAN or IIC interface of a module just select the appropriate
connection type. The connection parameters that are displayed below the connection type change according to the
selected interface.
When you have selected “RS232 / RS485” the COM port that is to be used, the baud rate and the module address
can be set. The factory default baud rate on a TMCM module is 9600. The factory default module address is 1.
If you do not know the address of the connected module, just click the “Search” button. The TMCL IDE then tries
to find the module address (please see section 7.6.3 for details).
N.B.: Versions prior to 1.18 also provided the option “XOR checksum”. This has now been removed, and it must not
be switched on in these older versions of the TMCL IDE.
Please note that RS485 adapters where the data direction is controlled by the RTS line of the COM port do not
work with Windows 95, Windows 98 or Windows ME (due to a bug in these operating systems). They can only be

 TMCL Reference Manual 73

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

used with Windows NT4, Windows 2000 or Windows XP, and also with these operating systems there may be the
problem that switching back to “receive” takes place too late.

Fig. 7.8: Some connection options

When the interface type “CANnes card” is selected, the CAN parameters are displayed and can be changed. “Device”
selects which CANnes card to use (if you have more than one CANnes card installed). The factory default of the
CAN bitrate on TMCM modules is normally 250kBit/s. “Termination” turns the termination resistor on the CANnes
card on or off. “Send ID” is the CAN ID to use when sending CAN datagrams to the module. “Recv. ID” is the ID
that the module uses to send back data to the PC.
Select “IIC (USB2X device)” when you wish to use the IIC interface of a Trinamic USB2X device. Here, only the
device name of the USB2X device and the IIC address of the module can be set. The factory default on a new
module is normally 2.
Select “CAN (USB2X device)” when you wish to use the CAN interface of a Trinamic USB2X device. The device name
of the USB2X device and the CAN send ID, receive ID and bit rate can be set. Please note that the USB2X device
must have firmware version 1.01 or higher to make use of this feature!
Select “RS485 (USB2X device)” when you wish to use the RS485 interface of a Trinamic USB2X device. The device
name of the USB2X, the bit rate and the module address can be set. Please note that the USB2X device must have
at least firmware version 2.05 to make use of this feature! This kind of RS485 interface is mainly useful for
updating modules that only have RS485 interface (e.g. TMCM-110/RS485).
When a TMCM-610 module is connected via USB the option “USB direct” can be used. The TMCL-IDE can
communicate with this module directly via USB. The device name of the TMCM-610 module can be selected here.

7.6.2 Configure
This function provides a dialogue for changing the configuration (global parameters) of a module.

7.6.2.1 RS232/RS485

Here, you can change the send address, the receive addresses and the baud rate of the serial interface of a
module. Just set the desired value and then click on the appropriate “Apply” button to send the new setting to the
module. Be careful, as most changes take effect immediately.

Fig. 7.9: RS232 / RS485 settings

 TMCL Reference Manual 74

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.6.2.2 CAN

This page provides the settings of the CAN interface of a module. The usage is the same as with the RS232/RS485
page. These settings do not have any effect on a TMCM-300 module as it does not have a CAN interface.

Fig. 7.10: CAN settings

7.6.2.3 Drivers

This page allows to change the settings for the SPI driver chain. See the TMC428 datasheet for details. These
settings must not be changed on modules other than TMCM-301! On TMCM-301 modules they only need changing
when motor drivers other than TMC-236 or TMC-239 are to be used.
When programming user specific driver configuration chain tables please disable the automatic mixed decay
handling for TMC236 drivers, the automatic full step switching and the freewheeling function first (axis parameters
203, 204 and 211). This is needed because these functions modifie the driver configuration table.

Fig. 7.11: The driver chain configuration

7.6.2.4 Microstepping (graphical view)

Here, the microstepping wave of the module can be changed to enhance the microstepping behaviour of a stepper
motor. The microstepping wave function can be changed between a triangular wave, a sine wave or a trapezoid
wave or something between that by changing the sigma value. Clicking the “Apply” button programs the new
wave table into the module. Just let the motor run and try out the best value.
The microstepping wave does not have any effect on the TMCM-302 module as it only provides step/direction
output.

 TMCL Reference Manual 75

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Fig. 7.12: Microstep wave form setting (graphical view)

7.6.2.5 Microstepping (table view)

The table view allows a finer adjusting of the microstep table. Clicking the “Get” button reads the actual microstep
table from the module. You can then edit the values. All values are hexadecimal numbers between 0 and 3F. The
“Set” button programs the table that can be seen on this screen into the module. Use the “Load” and “Save”
buttons to load a table from a file or store a table into the file.
When clicking the “Calculate” button a waveform will be calculated in the same manner as in the graphical view of
the microstepping function (section 7.6.2.4). This can be used as a basis of a table that can then be fine tuned
manually.

Fig. 7.13: Microstep wave form setting (table view)

7.6.2.6 Other

This page provides the following functions:

 Firmware revision: Click the “Get” button in the “Firmware Revision” section to read the firmware revision of a
module. The result will be displayed beside the “Get” button.

 Configuration EEPROM: Here you can lock or unlock the configuration EEPROM. When the configuration EEPROM
is locked, STAP and STGP commands do not have any effect so that the settings stored in the configuration
EEPROM can not be changed by accident. The buttons in the “Configuration EEPROM” section provide the
following functionality:

 Button “Get State”: Click this button to see if the configuration EEPROM is locked. The state will then be
displayed beside the button.

 “Lock”: Click this button to lock the configuration EEPROM.

 “Unlock”: Click here to unlock the configuration EEPROM.

 “Restore Factory Default”: Clicking this button will restore all settings stored in the configuration EEPROM
to their factory defaults and then reset the module. Please use this function with extreme care. If this
function should not work, try the “Clear EEPROM” function in the OS installation dialogue (see section
7.6.4).

 TMCL Autostart: The TMCL program auto start option can be turned on or off by clicking the appropriate
button. Click the “Get state” button to see whether auto start is turned on or off on a module.

 TMCL Reference Manual 76

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Fig. 7.14: Other module settings

7.6.3 Search
If you do not know the RS232/RS485 address of a module you can use this function to find out: This function
provides the address search dialogue. Here, just click the “Start” button. Then, every address (1..255) will be tried
out.

Fig. 7.15: Searching a module address

7.6.4 Install OS
By using this function you can update the firmware of a module. First, load the new firmware file (which must be
in Intel-HEX format) by clicking the “Load” button. The file is then checked if it is a TMCL firmware file, and its
device type and version number will be displayed. Then, click the “Start” button to program the new firmware into
the module. Please make sure that there will be no power cut or cut of the serial connection during the
programming process. The program checks if the device type in the firmware file and the device type of the
module are identical. An error message will be displayed if this is should not be the case. If everything is okay,
the new firmware will be programmed into the module and verified afterwards. The programming progress is
shown by the status bar.

Fig. 7.16: Firmware update in progress

If you click the “Clear EEPROM” button, all settings stored in the EEPROM of the module will be erased. If you then
power the module off and on again, all settings will be restored to their factory defaults.
Attention: Before these functions can be used, TMCM-300 modules have to be prepared in the following way:
Connect the pins 1 and 2 (the pins near the LED) with a jumper, then power it on. The module is now in boot

 TMCL Reference Manual 77

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

mode. After you have finished updating the firmware of such a module, power it off, remove the jumper and
power it on again. With other modules (TMCM-301/302/303/310/100/110/610) there is no need to put on a jumper.
Please note that with most of the modules this function is only available when the RS232 interface of the module
is used. With the TMCM-110(/SG)-CAN module the firmware can be updated via the CAN interface, and with the
TMCM-610 module also the USB interface can be used to upgrade the firmware. The TMCM-103, TMCM-116 and
TMCM-34x modules also support firmware upgrading via CAN (at 1000kBit/s).

7.6.5 StallGuard adjusting tool
The StallGuard adjusting tool helps to find the necessary motor parameters when
StallGuard is to be used. This function can only be used when a module is connected
that features StallGuard. This is checked when the StallGuard adjusting tool is selected
in the “Setup” menu. After this has been successfully checked the StallGuard adjusting
tool is displayed.
First, select the axis that is to be used in the “Motor” area.
Now you can enter a velocity and an acceleration value in the “Drive” area and then
click “Rotate Left” or “Rotate Right”. Clicking one of these button will send the
necessary commands to the module so that the motor starts running. The red bar in
the “StallGuard” area on the right side of the windows displays the actual load value.
Use the slider to set the StallGuard threshold value. If the load value reaches this value
the motor stops. Clicking the “Stop” button also stops the motor.
All commands necessary to set the values entered in this dialogue are displayed in the
“Commands” area at the bottom of the window. There, they can be selected, copied
and pasted into the TMCL editor.

7.6.6 StallGuard profiler
The StallGuard profiler is a utility that helps you find the best parameters for using stall detection. It scans
through given velocities and shows which velocities are the best ones. Similar to the StallGuard adjusting tool it
can only be used together with a module that supports StallGuard. This is checked right after the StallGuard
profiler has been selected in the “Setup” menu. After this has been successfully checked the StallGuard profiler
window will be shown.

First, select the axis that is to be used. Then, enter the “Start velocity”
and the “End velocity”. The start velocity is used at the beginning at the
profile recording. The recording ends when the end velocity has been
reached. Start velocity and end velocity must not be equal. After you have
entered these parameters, click the “Start” button to start the StallGuard
profile recording. Depending on the range between start and end velocity
this can take several minutes, as the load value for every velocity value is
measured ten times. The “Actual velocity” value shows the velocity that is
currently being tested and so tells you the progress of the profile
recording. You can also abort a profile recording by clicking the “Abort”
button.
The result can also be exported to Excel or to a text file by using the
“Export” button.

Fig. 7.17: The StallGuard Profiler

7.6.6.1 The result of the StallGuard profiler

The result is shown as a graphic in the StallGuard profiler window. After the profile recording has finished you can
scroll through the profile graphic using the scroll bar below it. The scale on the vertical axis shows the load value:

 TMCL Reference Manual 78

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

a higher value means a higher load. The scale on the horizontal axis is the velocity scale. The colour of each line
shows the standard deviation of the ten load values that have been measured for the velocity at that point. This is
an indicator for the vibration of the motor at the given velocity. There are three colours used:

 Green: The standard deviation is very low or zero. This means that there is effectively no vibration at this
velocity.

 Yellow: This colour means that there might be some low vibration at this velocity.

 Red: The red colour means that there is high vibration at that velocity.

7.6.6.2 Interpreting the result

In order to make effective use of the StallGuard feature you should choose a velocity where the load value is as
low as possible and where the colour is green. The very best velocity values are those where the load value is
zero (areas that do not show any green, yellow or red line). Velocities shown in yellow can also be used, but with
care as they might cause problems (maybe the motor stops even if it is not stalled).
Velocities shown in red should not be chosen. Because of vibration the load value is often unpredictable and so
not usable to produce good results when using stall detection.
As it is very seldom that exactly the same result is produced when recording a profile with the same parameters a
second time, always two or more profiles should be recorded and compared against each other.

7.6.7 Parameter calculation tool
The parameter calculation tool helps you to calculate the velocity and acceleration parameters in TMCL. Parameters
can be converted from physical units like rpm or rps into the internal units of TMCL and vice versa. There are
actually two parameter calculation tools: One for the TMCM-3xx, TMCM-6xx, TMCM-101/109/110/111 modules (which
are TMC428 based) and one for the TMCM-100 module (which is TMC453 based). You can choose the tool by
selecting the appropriate tab page in the parameter calculation dialogue. Always be sure to use the right one.

To use the calculation tool, just fill in the values that are known and then click the “Calculate” button. After
changing any parameter always the “Calculate” button again. When a parameter in the TMCL section has been
changed the physical units will be re-calculated with the next click on the “Calculate” button. When a paramater in
the physical units section has been changed the TMCL parameters will be re-calculated with the next click on the
“Calculate” button.

 TMCL Reference Manual 79

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.7 The TMCL debugger
The TMCL debugger makes source level debugging of TMCL programs possible. The TMCL program still runs on the
module, so true in-system debugging can be done. In order to use the debugger the module must have at least
firmware version 3.34 (TMCM-100, 110,111,3xx) resp. 6.28 (TMCM-101,102,6xx). Upgrade your module if needed.

7.7.1 Starting the debugger
Before starting the debugger you will first have to make sure that the module is connected to the PC and that the
program in the editor of the TMCL-IDE is the same as the program on your module. This can be done either by
assembling the program that currently is in the editor and afterwards downloading it to the module or by
disassembling the program that is currently stored on the module.
After these two preconditions have been verified you can start the debugger either by selecting the function
“Debugger active” in the “Debug” menu or by clicking the debugger icon on the tool bar. After the debugger has
been successfully started, the debugger functions will be enabled and most other functions of the TMCL-IDE will
be disabled (it is now also not possible to change the program in the editor).
You can exit the debugger by clicking “Debugger active” in the “Debug” menu or the debugger icon on the tool
bar once again. Then, all debugger functions will be disabled and all other functions of the TMCL-IDE will be
enabled again.

Figure 7.1: A TMCL program with two breakpoints, standing in the second breakpoint.

7.7.2 Breakpoints
Breakpoints can be set or removed by clicking the apropriate line on the left breakpoint bar of the editor. A blue
bullet is displayed in every line where a breakpoint can be set. When a breakpoint is set a red bullet with a green
tick is displayed in that line.
When a program is run either by the “Run” or by the “Animate” function of the debugger it will be stopped when
a breakpoint is reached. It can then be continued by clicking “Run”, “Animate” or “Step” again. It can also be reset
by clicking “Stop / Reset”, so that it can be restarted form the beginning again.

7.7.3 The “Run / Continue” function
Choose the “Run / Continue” function from the “Debug” menu (or click the “Run” icon or press F9) to start the
program resp. continue its execution. The program will be stopped either when its end is reached, it a breakpoint
is reached or when the “Pause” function in the “Debug” menu or the “Pause” icon is selected. In the latter two
cases the actual position in the program will be shown in the editor by a green arrow on the left side and the
program execution can be continued by using either the “Run / Continue” function, the “Step” function or the
“Animate” function. The contents of the accumulator and the X register are also shown on the status bar while the
program is paused.

 TMCL Reference Manual 80

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

If you wish to restart the program for the very beginning, select the “Stop/Reset” function before cicking “Run /
Continue”.

7.7.4 The “Pause” function
When a program is running (either started by the “Run / Continue” or by the “Animate” function), program
execution can be interrupted at any time by selecting the “Pause” function from the “Debug” menu or clicking the
“Pause” icon on the tool bar or pressing F2. Program execution can be continued by clicking “Run”, “Animate” or
“Step” again.
While a program is paused the actual position in the program is shown by a green arrow in the editor. The
contents of the accumulator and the X register are shown on the status bar of the TMCL-IDE.

7.7.5 The “Step” function
Use this function for a step-by-step execution of the TMCL program. Every time the “Step” function is selected
(either by selecting “Step” in the debug menu, clicking the “Step” icon on the tool bar or pressing F7) the next
command in the TMCL program is executed. The actual position is shown by a green arrow in the editor. The
contents of the accumulator and the X register are also shown on the status bar.

7.7.6 The “Animate” function
This function automatically executes the TMCL program step-by-step, so that the flow of the program can be seen.
The actual position in the program is shown and updated after every command, and the contents of the
accumulator and the X register are also shown on the status bar and updated after every command.
The program will be paused when running into a breakpoint or when the “Pause” function is selected. Program
execution can then be continued either by the “Run / Continue”, the “Animate” or the “Step” function.

7.7.7 The “Stop / Reset” function
Selecting “Stop / Reset” from the “Debug” menu (or clicking the “Stop / Reset” button or pressing Ctrl+F2) stops
program execution immediately and resets the program. This means that starting the program again using “Run /
Continue”, “Animate” or “Step” will start the program form the beginning.
This function can also be used when the program execution is paused (either by a breakpoint or by the “Pause”
function) to reset it and ensure that the program can be started again from the beginning.

7.7.8 The “Direct Mode” function in the debugger
While in the debugger, the “Direct Mode” can be used at any time when the program is not running to inspect or
change parameters. Use this with care, as changing parameters out of the normal program flow can lead to
unexpected behaviour of the TMCL program.

7.8 The syntax of TMCL in the TMCL assembler
Here, the syntax of the TMCL commands used by the TMCL assembler is given. Please see the chapter 3 for an
explanation of the functionality of the TMCL commands. The command mnemonics given there are used in the
TMCL assembler. Please see also the sample program files and chapter 3 and 8 to learn more about TMCL
programming.

7.8.1 Assembler directives
Assembler directives always start with a # sign. The only directive is #include to include a file. The name of that
file must be given after the #include directive. If that file is already in the editor, it will be taken from there.
Otherwise it will be loaded from file, using the include file path that can be set in the “Options” dialogue.
Example:
#include test.tmc

 TMCL Reference Manual 81

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

7.8.2 Symbolic constants
Symbolic constants are defined using the syntax <Name>=<Value>. A name must always start with a letter or the
sign _ and may then contain any combination of letters, numbers and the sign _. A value must always be a
decimal, hexadecimal or binary number or a constant expression (see section 7.8.3). Hexadecimal numbers start
with a $ sign, binary numbers start with a % sign. Examples:
Speed=1000
Speed2=Speed/2
Mask=$FF
BinaryValue=%1010101

7.8.3 Constant expressions
Wherever a numerical value is needed, it can also be calculated during assembly. For this purpose constant
expressions can be used. A constant expression is just a formula that evaluates to a constant value. The syntax is
very similar to BASIC or other programming languages. Please note that the calculation takes place during
assembly and not during execution of the TMCL program on the module.
Internally, the assembler uses floating point arithmetic to evaluate a constant expression, but as TMCL commands
only take integer values, the result of a constant expression will always be rounded to an integer value when used
as an argument to a TMCL command. Here is a list of functions and operators that can be used in constant
expressions:

 Functions:

Name Function

SIN Sinus

COS Cosinus

TAN Tangens

ASIN Arcus Sinus

ACOS Arcus Cosinus

ATAN Arcus Tangens

LOG Logarithm Base 10

LN Logarithm Base e

EXP Power to Base e

SQRT Square root

ABS Absolute value

INT Integer (truncate)

ROUND Integer (Round)

SIGN Returns
-1 if argument<1,
0 if argument=0
1 if argument>0

DEG Converts from radiant to degrees

RAD Converts from degrees to radiant

 Operators

Symbol Meaning

() Parenthesis

^ Power

* Multiplication

/ Division

+ Addition

- Subtraction

Symbolic constants, floating point numbers, integer numbers, hexadecimal numbers and binary numbers can also
be used in constant expressions. Here are some examples of constant expressions used wherever constant values
can be placed:

 TMCL Reference Manual 82

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

ROL 0, 7+9*8
Speed2=Speed*SIN(0.5)
MVP ABS, 0, 3*1000
Sin90=Sin(Rad(90))

7.8.4 Labels
Labels have the form <Name>:. There are the same rules for label names as for symbolic constants.
Example (the label has the name “Loop”):
Loop: MVP ABS, 0, 1000
 WAIT POS, 0, 0
 MVP ABS, 0, 0
 WAIT POS, 0, 0
 JA Loop

7.8.5 Comments
Comments always start with // (like in C++). The rest of the line is then ignored.

7.8.6 TMCL Commands
Here is a list of all command mnemonics that are recognized by the assembler. Please see chapter 3 of this
manual for a detailed explanation of every command.

ROR <n1>, <n2>
ROL <n1>, <n2>
MST <n1>
MVP <mvp_opt>, <n1>, <n2>
SAP <n1>, <n2>, <n3>
GAP <n1>, <n2>
STAP <n1>, <n2>
RSAP <n1>, <n2>
SGP <n1>, <n2>, <n3>
GGP <n1>, <n2>
STGP <n1>, <n2>
RSGP <n1>, <n2>
RFS <rfs_opt>, <n1>
SIO <n1>, <n2>, <n3>
GIO <n1>, <n2>
CALC <op1>, <n2>, <n3>
CALCX <op2>, <n2>, <n3>
COMP <n1>
JC <cc>, <Label>
JA <Label>
CSUB <Label>
RSUB
WAIT <Event>, <n1>, <n2>
STOP
SAC <n1>, <n2>, <n3>
SCO <n1>, <n2>, <n3>
GCO <n1>, <n2>
CCO <n1>, <n2>
AAP <n1>, <n2>
AGP <n1>, <n2>
CLE <Flag>

 TMCL Reference Manual 83

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

with:
<n1>, <n2>, <n3>: Any numerical value, constant expression or symbolic constant
<mvp_opt>: An option for MVP: ABS, REL or COORD.
<rfs_opt>: An option for RFS: START, STOP or STATUS.
<cc>: A condition code: ZE, NZ, EQ, NE, GT, GE, LT, LE, ETO, EAL, EDV, EPO.
<Event>: A wait event. This can be TICKS, POS, LIMSW, REFSW or RFS.
<op1>: An operator for the CALC command: ADD,SUB,MUL,DIV,MOD,AND,OR,NOT,LOAD
<op2>: An operator for the CALCX command: ADD,SUB,MUL,DIV,MOD,AND,OR,NOT,LOAD,SWAP
<Label>: A label defined somewhere else in the program.
<Flag>: An error flag code: ALL, ETO, EAL, EDV or EPO.

 TMCL Reference Manual 84

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

8 TMCL Programming Techniques

8.1 General structure of a TMCL program

8.1.1 Initialization
The first task in a TMCL program (like in other programs also) is to initialize all parameters where different values
than the default values are necessary. For this purpose, SAP and SGP commands are used.

8.1.2 Main loop
Embedded systems normally use a main loop that runs infinitely. This is also the case in a TMCL application that is
running stand alone. Normally it also the auto start mode of the module should be turned on. After power up, the
module then starts the TMCL program, which first does all necessary initializations and then enters the main loop,
which does all necessary tasks end never ends (only when the module is powered off or reset). There are
exceptions to this, e.g. when TMCL routines are called from a host in direct mode.
So most (but not all) stand alone TMCL programs look like this:
//Initialization

SAP 4, 0, 500 //define max. positioning speed

SAP 5, 0, 100 //define max. acceleration

MainLoop:

 //do something, in this example just running between two positions

 MVP ABS, 0, 5000

 WAIT POS, 0, 0

 MVP ABS, 0, 0

 WAIT POS, 0, 0

 JA MainLoop //end of the main loop => run infinitely

8.2 Using symbolic constants
To make a program better readable and understandable, symbolic constants should be used for all important
numerical values that are used in a program (this is not only true for TMCL programs). Since version 1.68 of the
TMCL-IDE we also provide an include file with symbolic names for all important axis parameters and global
paramters.
So we can make out example look a little bit nicer:
//Define some constants

#include TMCLParam.tmc

MaxSpeed = 500

MaxAcc = 100

Position0 = 0

Position1 = 5000

//Initialization

 SAP APMaxPositioningSpeed, Motor0, MaxSpeed

 SAP APMaxAcceleration, Motor0, MaxAcc

MainLoop:

 MVP ABS, Motor0, Position1

 WAIT POS, Motor0, 0

 MVP ABS, Motor0, Position0

 WAIT POS, Motor0, 0

 JA MainLoop

 TMCL Reference Manual 85

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Just have a look at the file “TMCLParam.tmc” provided with the TMCL-IDE. It contains symbolic constants that
define alll important parameter numbers.
Using constants for other values also makes it easier to change them when they are used more thant once in a
program. You will then just have to change the definition of the constant and not all occurances of the constant
in the program.

8.3 Using variables
The “user variables” (chapter 5.3) can be used if variables are needed in your program. These can store temporary
values. The commands SGP, GGP and AGP are used to work with user variables. SGP is used to set a variable to a
constant value (e.g. during initialization phase). GGP is used to read the contents of a user variable and to copy it
to the accumulator register for further usage. The AGP command can be used to copy the contents of the
accumulator register to a user variable, e.g . to store the result of a calculation. Here are some examples

Furthermore, these variables can provide a powerful way of communication between a TMCL program running on
a module and a host. The host can change a varaible by issuing a direct mode SGP command (remember that
while a TMCL program is running direct mode commands can still be executed, without interfering with the
running program). If the TMCL program polls this variable regularly it can react on such changes of its contents.
The host can also poll a variable using GGP in direct mode and see if it has been changed by the TMCL program.

8.4 Using subroutines
The CSUB and RSUB commands provide a mechanism for using subroutines. The CSUB command branches to the
given label. When an RSUB command is executed control goes back to the command that follows the CSUB
command that called the subroutine.
This mechanism can also be nested. From a subroutine called by a CSUB command other subroutines can be
called. In the current version of TMCL eight levels of nested subroutine calls are allowed.

8.5 Mixing direct mode and stand alone mode
Direct mode and stand alone mode can also be mixed. When a TMCL program is being executed in stand alone
mode, direct mode commands are also processed (and they do not disturb the flow of the program running in
stand alone mode). So it is also possible to query e.g. the actual position of the motor in direct mode while a
TMCL program is running.
Communication between a program running in stand alone mode and a host can be done using the TMCL user
variables. The host can then change the value of a user variable (using a direct mode SGP command) which is
regularly polled by the TMCL program (e.q. in its main loop) and so the TMCL program can react on such changes.
Vice versa, a TMCL program can change a user variable that is polled by the host (using a direct mode GGP
command).
A TMCL program can be started by the host using the run command in direct mode (please see chapter 3.35). This
way, also a set of TMCL routines can be defined that are called by a host. In this case it is recommended to place
JA commands at the beginning of the TMCL program that jump to the specific routines. This assures that the entry
addresses of the routines will not change even when the TMCL routines are change (so when changing the TMCL
routines the host program does not have to be changed). Here is an example:

//Jump commands to the TMCL routines

Func1: JA Func1Start

Func2: JA Func2Start

Func3: JA Func3Start

Func1Start: MVP ABS, 0, 1000

 WAIT POS, 0, 0

 MVP ABS, 0, 0

 WAIT POS, 0, 0

 STOP

 TMCL Reference Manual 86

Trinamic Motion Control GmbH & Co KG
Sternstraße 67

D – 20357 Hamburg, Germany
http://www.trinamic.com

Func2Start: ROL 0, 500

 WAIT TICKS, 0, 100

 MST 0

 STOP

Func3Start:

ROR 0, 1000

 WAIT TICKS, 0, 700

 MST 0

 STOP

This example provides three very simple TMCL routines. They can be called from a host by issuing a run command
with address 0 to call the first function, or a run command with address 1 to call the second function, or a run
command with address 2 to call the third function.
You can see the addresses of the TMCL labels (that are needed for the run commands) by using the “Generate
symbol file” function of the TMCL IDE (please see chapter 7.6.1.1).

	2.1 Binary command format 6
	2.1.1 Checksum calculation 6

	2.2 The reply format 7
	2.2.1 Status codes 7

	2.3 Stand-alone applications 7
	2.4 TMCL command overview 7
	2.4.1 Motion commands 7
	2.4.2 Parameter commands 8
	2.4.3 I/O port commands 8
	2.4.4 Control commands 8
	2.4.5 Calculation commands 9

	2.5 The ASCII interface 9
	2.5.1 Format of the command line 9
	2.5.2 Format of a reply 9
	2.5.3 Commands that can be used in ASCII mode 10
	2.5.4 Configuring the ASCII interface 10

	3.1 ROR – Rotate Right 12
	3.2 ROL – Rotate Left 13
	3.3 MST – Motor Stop 14
	3.4 MVP – Move to Position 15
	3.5 SAP – Set Axis Parameter 17
	3.6 GAP – Get Axis Parameter 18
	3.7 STAP – Store Axis Parameter 19
	3.8 RSAP – Restore Axis Parameter 20
	3.9 SGP – Set Global Parameter 21
	3.10 GGP – Get Global Parameter 22
	3.11 STGP – Store Global Parameter 23
	3.12 RSGP – Restore Global Parameter 24
	3.13 RFS – Reference Search 25
	3.14 SIO – Set Output 26
	3.15 GIO – Get Input / Output 28
	3.16 CALC – Calculate 30
	3.17 COMP – Compare 31
	3.18 JC – Jump Conditional 32
	3.19 JA – Jump Always 33
	3.20 CSUB – Call Subroutine 34
	3.21 RSUB – Return from Subroutine 35
	3.22 WAIT – Wait for an event to occur 36
	3.23 STOP – Stop TMCL program execution 38
	3.24 SAC – SPI Bus Access 39
	3.25 SCO – Set Coordinate 40
	3.26 GCO – Get Coordinate 41
	3.27 CCO – Capture Coordinate 42
	3.28 CALCX – Calculate using the X register 43
	3.29 AAP – Accumulator to Axis Parameter 44
	3.30 AGP – Accumulator to Global Parameter 45
	3.31 CLE – Clear Error Flags 46
	3.32 User definable commands (UF0..UF7) 47
	3.33 Request target position reached event 48
	3.34 BIN – Return to Binary Mode 49
	3.35 TMCL Control Functions 50
	4.1 Basic axis parameters (all TMCL stepper motor modules except the TMCM-100 module and the Monopack 2) 52
	4.2 Advanced axis parameters (all TMCL stepper motor modules except the TMCM-100) 53
	4.3 Axis parameters on the TMCM-100 and on the Monopack 2 56
	5.1 Bank 0 59
	5.2 Bank 1 62
	5.3 Bank 2 63
	6.1 Reference search with TMCM-3xx / 10x / 11x / 61x modules 64
	6.2 Reference search with TMCM-100 modules 65
	6.3 Using an incremental encoder with TMCM-100 modules 65
	6.3.1 Setting the resolution 65
	6.3.2 Deviation detection 66
	6.3.3 Position correction 66

	6.4 Stall Detection (TMCL Version 3.06 or higher) 66
	6.5 Fixing microstep errors (TMCL V3.13 or higher) 67
	6.6 Using the RS485 interface 67
	7.1 Installation 68
	7.2 Getting started 69
	7.3 The integrated editor 69
	7.4 The “File” menu 69
	7.4.1 New 69
	7.4.2 Open 69
	7.4.3 Save, Save as 69
	7.4.4 Save all 69
	7.4.5 Close 69
	7.4.6 Exit 69

	7.5 The “TMCL” menu 69
	7.5.1 Basics 69
	7.5.2 Direct mode 70
	7.5.3 Assemble a TMCL program 70
	7.5.4 Downloading the program 71
	7.5.5 The “Main file” function 71
	7.5.6 The “Start” function 71
	7.5.7 The “Stop” function 71
	7.5.8 The “Continue” function 71
	7.5.9 Disassembling a TMCL program 71

	7.6 The “Setup” menu 72
	7.6.1 Options 72
	7.6.2 Configure 73
	7.6.3 Search 76
	7.6.4 Install OS 76
	7.6.5 StallGuard adjusting tool 77
	7.6.6 StallGuard profiler 77
	7.6.7 Parameter calculation tool 78

	7.7 The TMCL debugger 79
	7.7.1 Starting the debugger 79
	7.7.2 Breakpoints 79
	7.7.3 The “Run / Continue” function 79
	7.7.4 The “Pause” function 80
	7.7.5 The “Step” function 80
	7.7.6 The “Animate” function 80
	7.7.7 The “Stop / Reset” function 80
	7.7.8 The “Direct Mode” function in the debugger 80

	7.8 The syntax of TMCL in the TMCL assembler 80
	7.8.1 Assembler directives 80
	7.8.2 Symbolic constants 81
	7.8.3 Constant expressions 81
	7.8.4 Labels 82
	7.8.5 Comments 82
	7.8.6 TMCL Commands 82

	8.1 General structure of a TMCL program 84
	8.1.1 Initialization 84
	8.1.2 Main loop 84

	8.2 Using symbolic constants 84
	8.3 Using variables 85
	8.4 Using subroutines 85
	8.5 Mixing direct mode and stand alone mode 85
	Introduction
	Basic TMCL Concepts
	Binary command format
	Checksum calculation

	The reply format
	Status codes

	Stand-alone applications
	TMCL command overview
	Motion commands
	Parameter commands
	I/O port commands
	Control commands
	Calculation commands

	The ASCII interface
	Format of the command line
	Format of a reply
	Commands that can be used in ASCII mode
	Configuring the ASCII interface

	TMCL Command Dictionary
	ROR – Rotate Right
	ROL – Rotate Left
	MST – Motor Stop
	MVP – Move to Position
	SAP – Set Axis Parameter
	GAP – Get Axis Parameter
	STAP – Store Axis Parameter
	RSAP – Restore Axis Parameter
	SGP – Set Global Parameter
	GGP – Get Global Parameter
	STGP – Store Global Parameter
	RSGP – Restore Global Parameter
	RFS – Reference Search
	SIO – Set Output
	GIO – Get Input / Output
	CALC – Calculate
	COMP – Compare
	JC – Jump Conditional
	JA – Jump Always
	CSUB – Call Subroutine
	RSUB – Return from Subroutine
	WAIT – Wait for an event to occur
	STOP – Stop TMCL program execution
	SAC – SPI Bus Access
	SCO – Set Coordinate
	GCO – Get Coordinate
	CCO – Capture Coordinate
	CALCX – Calculate using the X register
	AAP – Accumulator to Axis Parameter
	AGP – Accumulator to Global Parameter
	CLE – Clear Error Flags
	User definable commands (UF0..UF7)
	Request target position reached event
	BIN – Return to Binary Mode
	TMCL Control Functions

	Axis Parameters
	Basic axis parameters (all TMCL stepper motor modules except the TMCM-100 module and the Monopack 2)
	Advanced axis parameters (all TMCL stepper motor modules except the TMCM-100)
	Axis parameters on the TMCM-100 and on the Monopack 2

	Global Parameters
	Bank 0
	Bank 1
	Bank 2

	Hints and Tips
	Reference search with TMCM-3xx / 10x / 11x / 61x modules
	Reference search with TMCM-100 modules
	Using an incremental encoder with TMCM-100 modules
	Setting the resolution
	Deviation detection
	Position correction

	Stall Detection (TMCL Version 3.06 or higher)
	Fixing microstep errors (TMCL V3.13 or higher)
	Using the RS485 interface

	The TMCL IDE
	Installation
	Getting started
	The integrated editor
	The “File” menu
	New
	Open
	Save, Save as
	Save all
	Close
	Exit

	The “TMCL” menu
	Basics
	Direct mode
	Assemble a TMCL program
	Downloading the program
	The “Main file” function
	The “Start” function
	The “Stop” function
	The “Continue” function
	Disassembling a TMCL program

	The “Setup” menu
	Options
	Assembler options
	Connection options

	Configure
	RS232/RS485
	CAN
	Drivers
	Microstepping (graphical view)
	Microstepping (table view)
	Other

	Search
	Install OS
	StallGuard adjusting tool
	StallGuard profiler
	The result of the StallGuard profiler
	Interpreting the result

	Parameter calculation tool

	The TMCL debugger
	Starting the debugger
	Breakpoints
	The “Run / Continue” function
	The “Pause” function
	The “Step” function
	The “Animate” function
	The “Stop / Reset” function
	The “Direct Mode” function in the debugger

	The syntax of TMCL in the TMCL assembler
	Assembler directives
	Symbolic constants
	Constant expressions
	Labels
	Comments
	TMCL Commands

	TMCL Programming Techniques
	General structure of a TMCL program
	Initialization
	Main loop

	Using symbolic constants
	Using variables
	Using subroutines
	Mixing direct mode and stand alone mode

